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Abstract

The Segment Anything Model (SAM) has rapidly been
adopted for segmenting a wide range of natural images. How-
ever, recent studies have indicated that SAM exhibits subpar
performance on 3D medical image segmentation tasks. In ad-
dition to the domain gaps between natural and medical im-
ages, disparities in the spatial arrangement between 2D and
3D images, the substantial computational burden imposed
by powerful GPU servers, and the time-consuming manual
prompt generation impede the extension of SAM to a broader
spectrum of medical image segmentation applications. To ad-
dress these challenges, in this work, we introduce a novel
method, AutoSAM Adapter, designed specifically for 3D
multi-organ CT-based segmentation. We employ parameter-
efficient adaptation techniques in developing an automatic
prompt learning paradigm to facilitate the transformation of
the SAM model’s capabilities to 3D medical image segmen-
tation, eliminating the need for manually generated prompts.
Furthermore, we effectively transfer the acquired knowledge
of the AutoSAM Adapter to other lightweight models specifi-
cally tailored for 3D medical image analysis, achieving state-
of-the-art (SOTA) performance on medical image segmen-
tation tasks. Through extensive experimental evaluation, we
demonstrate the AutoSAM Adapter as a critical foundation
for effectively leveraging the emerging ability of foundation
models in 2D natural image segmentation for 3D medical im-
age segmentation.

Introduction
Recently, computer vision foundation models like the Seg-
ment Anything Model (SAM) have further pushed the fron-
tiers of image segmentation (Kirillov et al. 2023). SAM has
demonstrated impressive performance and generalizability
on a variety of semantic segmentation tasks (Zhang et al.
2023b), bringing new promise to medical image segmenta-
tion where the current approaches are limited by the quantity
and quality of the segmentation masks. In contrast to exist-
ing custom-designed transformer models, such as UNETR
(Hatamizadeh et al. 2022), SwinUNETR (Tang et al. 2022),
and FocalUNETR (Li et al. 2023), that are trained only with
a few patient samples and masks, foundation models includ-
ing SAM are trained with billions of images and millions of
masks. Such large-sized foundation models have also been
observed to generalize to medical image segmentation tasks
but with relatively worse performance compared to the state-
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Figure 1: Challenges of using SAM for medical image
segmentation, (A) T-SNE plot of embeddings encoded by
SAM’s image encoder for medical image datasets AMOS (Ji
et al. 2022), and BTCV (Landman et al. 2015), and for nat-
ural image datasets ADE20K (Zhou et al. 2017) and COCO
(Lin et al. 2014), (B) 2D image vs 3D volumetric input, and
(C) heavy vs lightweight computing requirements.

of-the-art (SOTA) models in medical image segmentation
(Gong et al. 2023).

Recent efforts have attempted to extend the success of
SAM to medical image segmentation tasks including (Zhang
and Jiao 2023; Wu et al. 2023; Ma and Wang 2023; Gong
et al. 2023; Shaharabany et al. 2023). However, the demon-
strated performance has exhibited reduced precision and sta-
bility, particularly in more intricate segmentation tasks char-
acterized by smaller sizes, irregular shapes, and lower con-
trast properties of medical images in comparison to natural
images (Gong et al. 2023). Adapting the original SAM ar-
chitecture, which is rooted in 2D natural images, to effec-
tively harness the 3D spatial information inherent in volu-
metric medical data poses a significant challenge. Novel ap-
proaches must be devised to bridge the gap between natural
and medical image segmentation tasks, opening doors for
the development of cutting-edge segmentation techniques.
A few substantial issues (please see Fig. 1) that need to be
addressed in developing a SAM-based medical image seg-
mentation framework are, (A) encompassing the oversight
of substantial domain disparities between natural and medi-
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cal images (Fig. 1(A)), (B) extracting 3D spatial information
from volumetric medical images effectively (Fig. 1(B)), and
(C) the high computational demands even during inference
(Fig. 1(C)). Furthermore, SAM’s reliance on labor-intensive
manually generated prompts (Gao et al. 2023; Shaharabany
et al. 2023) hampers its successful application, particularly
in multi-organ medical image segmentation tasks.

As healthcare becomes increasingly patient-centered and
portable imaging devices like Computed Tomography (CT)
and Magnetic Resonance Imaging (MRI) become more ac-
cessible, point-of-care tests (POCT) hold significant poten-
tial to enhance treatment effectiveness and efficiency by pro-
viding diagnoses at the patient’s location. Especially in time-
sensitive scenarios, POCT can substantially improve diagno-
sis and treatment processes, resulting in smoother and more
efficient experiences for both patients and caregivers. No-
tably, portable 3D medical image segmentation techniques
drive the functionality of POCTs, demanding the develop-
ment of highly compressed models without compromising
the segmentation performance.

To address the above issues, we introduce a novel Au-
toSAM Adapter method for a transition of SAM from 2D
to 3D for medical image segmentation. Initially, we design
intricate modifications for the image encoder at the input
level, enabling the original 2D transformer to adeptly ac-
commodate volumetric inputs while optimizing the reusabil-
ity of pre-trained weights with a parameter-efficient adap-
tation method. Subsequently, at the prompt encoder level,
we design an automatic prompt encoder module that takes
the extracted feature maps from the previous image encoder
as input and automatically learns the required prompts for
the following mask encoder. This design effectively removes
the time-consuming manual prompt generation process, es-
pecially, for multi-organ medical image segmentation tasks.
Additionally, we prioritize a lightweight design for the mask
decoder at the output level, emphasizing multi-layer ag-
gregation. Through extensive experimentation on CT-based
multi-organ segmentation datasets, inclusive of comprehen-
sive comparisons with state-of-the-art approaches including
nn-UNet (Isensee et al. 2021), as well as recent adapters
in the field, our results exhibit a significant performance
improvement over existing techniques. Finally, we apply
knowledge distillation (KD) to transfer the learned knowl-
edge from AutoSAM Adapter to other lightweight models
like SwinUNETR (Tang et al. 2022) for the efficiency-aware
POCT use scenario. The main contributions of this work are
summarized below.

• To tackle the domain gap between 2D and 3D inputs, we
introduce a 3D adaptor to extract spatial information for
volumetric segmentation in medical images.

• To the best of our knowledge, this is the first work to
adapt the SAM model for 3D-based multi-organ segmen-
tation that can automatically learn prompts without the
laborious manual prompting process.

• To facilitate mobile-friendly use scenarios for POCT, we
employ KD to train lightweight models tailored for point-
of-care medical image segmentation applications.

• Extensive experiments and analysis on the AMOS

and BTCV CT-based multi-organ segmentation datasets
demonstrate that the proposed AutoSAM Adapter and
its lightweight version achieve superior performance on
medical image segmentation tasks compared to SOTA.

Related Work
Foundation Computer Vision Models. With advance-
ments in deep learning models, most contemporary vi-
sion frameworks adhere to the pre-training and fine-tuning
paradigm (Min et al. 2021). Recently, computer vision
researchers have shown substantial interest in large and
adaptable foundational models, capitalizing on pre-training
techniques such as self-supervised learning (Jing and Tian
2020), contrastive learning (Wang and Qi 2022), and
language-vision pre-training (Radford et al. 2021), among
others. Notably, the SAM model (Kirillov et al. 2023), re-
cently pre-trained on a dataset of over 11 million images,
has emerged as a versatile foundational model for natural
image segmentation. SAM demonstrates impressive zero-
shot capabilities in segmenting diverse subjects in real-world
environments, using an interactive and prompt-driven ap-
proach. Additionally, SEEM (Zou et al. 2023), another con-
temporaneous effort to SAM, introduces a more comprehen-
sive prompting scheme to facilitate semantic-aware open-set
segmentation. Furthermore, DINOv2 (Oquab et al. 2023)
focuses on scaling up the pre-training of a ViT model in
terms of data and model size. This approach aims to gen-
erate versatile visual features that simplify the fine-tuning of
the downstream tasks.

Parameter-efficient Model Fine-tuning. Given the ex-
tensive utilization of foundational models, the concept of
parameter-efficient fine-tuning has garnered significant at-
tention. Existing methods for efficient fine-tuning can be
categorized into three groups (Ding et al. 2023). Addition-
based methods that involve incorporating lightweight
adapters (Pan et al. 2022; Wang et al. 2023) or prompts (Liu
et al. 2023; Jia et al. 2022) into the original model, with
the sole focus on adjusting these parameters; Specification-
based methods (Zaken, Ravfogel, and Goldberg 2021; Guo,
Rush, and Kim 2020) that concentrate on selecting a
small subset of the original parameters for tuning; and
reparameterization-based methods (Hu et al. 2021) that
leverage low-rank matrices to approximate parameter up-
dates. In recent times, a few researchers have extended
pre-trained image models to encompass video comprehen-
sion (Pan et al. 2022) or volumetric segmentation (Wang
et al. 2023). Nevertheless, these methods treat the additional
dimension as a “word group” and employ specialized mod-
ules to aggregate information along the word dimension. In
contrast, in our work, we consider all three dimensions as
isotropic and directly adapt the trained transformer block to
capture 3D patterns.

SAM-based Medical Image Segmentation. This line of
work primarily focuses on enhancing SAM through fine-
tuning for specific segmentation datasets, aiming to mitigate
the noticeable performance drop of SAM on medical im-
ages. MedSAM (Ma and Wang 2023) specifically concen-
trates on refining the SAM decoder by employing prompts



generated from label masks across more than 30 medical
image datasets. The outcome demonstrates improved per-
formance compared to zero-shot predictions using prompts.
Zhang et al. (Zhang and Liu 2023) opt for a low-rank fine-
tuning approach, focusing on the SAM encoder. By com-
bining this strategy with SAM decoder training, they tai-
lor SAM for abdominal segmentation tasks. Junde Wu et
al.(Wu et al. 2023) follow a distinct path, wherein they
freeze SAM’s weights and incorporate a trainable adapta-
tion module within SAM to mitigate the need for complete
re-training. Despite some progress, these methods either ig-
nore the 3D pattern of medical images or require a laborious
manual prompt generation process, which restricts the full
potential of SAM from being realized in the medical image
segmentation domain.

Lightweight Models for POCT. Due to the limited com-
putation power in POCT usage scenarios, directly using the
SAM model for medical segmentation is not feasible. In-
stead of using the tailored network architectures like Mo-
bile ViT (Mehta and Rastegari 2021), MobileNet (Howard
et al. 2017), and EfficientNet (Tan and Le 2019), compress-
ing large models during training stages into lightweight ones
is a promising strategy. One popular approach for in-training
model compression is knowledge distillation (KD) (Hin-
ton, Vinyals, and Dean 2015) where a full teacher model
is trained on the cloud or an on-premise GPU cluster, and
a student model is trained at the mobile device with the
“knowledge” distilled via the soft labels from the teacher
model. Thus the student model is trained to mimic the out-
puts of the teacher model as well as to minimize the cross-
entropy loss between the true labels and predictive probabil-
ities (soft labels). KD yields compact student models that
demonstrate outstanding performance in a wide range of
real-world applications, e.g., COVID-MobileXpert (Li, Li,
and Zhu 2020), on-device text classification (Qiang et al.
2022), etc. Recently, the technique has also been applied to
develop mobile SAM (Zhang et al. 2023a).

Methodology
In this section, we explain how to modify the original SAM
architecture developed for 2D natural images to work with
3D volumetric medical images for segmentation tasks. We
first provide a brief overview of the SAM framework (as
shown in Fig. 2), followed by a detailed explanation of the
adjustments made to the image encoder, auto prompt gener-
ator, and mask decoder.

The SAM Architecture
SAM (Kirillov et al. 2023) is a prompt-driven image seg-
mentation framework, known for its impressive performance
and generalization ability in segmenting natural images. The
SAM architecture comprises an image encoder, prompt en-
coder, and mask decoder. The image encoder utilizes the
Vision Transformer (ViT) to transform original images into
discrete embeddings. The prompt encoder converts diverse
prompts into compact embeddings, achieved by combin-
ing fixed positional encoding and adaptable prompt-specific

embedding. The mask decoder integrates a prompt self-
attention module and bidirectional cross-attention modules
for prompt-to-image and image-to-prompt attention. After
attention processes, the feature map undergoes upsampling
and passes through a multi-layer perceptron (MLP) to gener-
ate segmentation masks. However, the model’s design suits
2D natural image segmentation, struggling with 3D volu-
metric medical imagery due to slice-wise predictions that
disregard inter-slice spatial context. Performance on medical
images also falters due to domain disparities between med-
ical and natural images. Therefore, achieving an effective
performance with SAM on medical-imaging tasks requires
tailored adaptation and fine-tuning.

Handling 3D Volumetric Inputs
The original SAM model is built upon the 2D Vision Trans-
former (ViT), excelling in capturing 2D image patterns but
facing limitations with 3D medical imaging like CT and
MRI. These modalities produce volumetric 3D data, chal-
lenging the 2D ViT’s processing ability. Common medical
imaging workflows analyze images slice by slice, integrat-
ing information using spatial adaptors or temporal modules,
yet the core architecture remains 2D-centric.

However, for medical image analysis, the 2D-centric ap-
proach falls short due to the inherent 3D nature of volumet-
ric medical images, which have uniform spatial resolutions
across dimensions. To address this, we propose an adapta-
tion strategy (Fig. 2A and Fig. 2B) with two aims: enabling
the model to directly learn 3D spatial patterns and maintain-
ing continuity by inheriting most parameters from the pre-
trained model, introducing easily adjustable incremental pa-
rameters:

• Positional Encoding: The pre-trained ViT model has a
lookup table of size C ×H ×W with positional encod-
ing. Furthermore, we initialize a tunable lookup table of
size C×D with zeros. To obtain the positional encoding
of a 3D point (d, h, w), we add the embedding from the
frozen lookup table with (h,w) to the embedding from
the tunable lookup table with (d).

• Patch Embedding: We utilize a combination of 1×k×k
and k× 1× 1 3D convolutions to approximate the effect
of a k× k× k convolution (e.g., k = 14). The 1× k× k
convolution is initialized with the weights from a pre-
trained 2D convolution and remains unaltered during the
fine-tuning phase. As for the newly introduced k × 1 ×
1 3D convolution, we apply depth-wise convolution to
decrease the number of parameters that need adjustment.
This approach helps in managing the complexity of the
model.

• Attention Block: The attention blocks can be directly
adjusted to accommodate 3D features. In the case of 2D
inputs, the size of the queries is [B,HW,C], which can
be effortlessly modified to [B,DHW,C] for 3D inputs,
while retaining all the pre-trained weights. We imple-
ment sliding-window mechanisms akin to those in the
SwinUNETR (Tang et al. 2022) to mitigate the memory
impact resulting from the increase in dimensions. This
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Figure 2: (A) The overall AutoSAM Adapter design, (B) the architecture of spatial adapter module, (C) the architecture of Auto
Prompt Generator, and (D) the pipeline of deriving lightweight SwinUNETR from AutoSAM Adapter through the knowledge
distillation process.

approach aids in optimizing the model’s performance
while managing memory requirements.

• Bottleneck: Given that convolution layers are generally
easier to optimize than transformers, we replace 2D con-
volutions in the bottleneck with 3D counterparts and train
them from scratch to improve performance.

By making the above adjustments, we can smoothly
transition the 2D ViT into a 3D ViT, reusing most pa-
rameters. However, fully fine-tuning the 3D ViT can be
resource-intensive. To address this, we propose using a
lightweight adapter approach for efficient fine-tuning. The
adapter comprises a down-projection linear layer and an up-
projection linear layer, represented as Adapter(X) = X +
Act(XWdown)Wup. Here, X ∈ RN×C is the original fea-
ture representation, Wdown ∈ RC×N ′

and Wup ∈ RN ′×C

are down-projection and up-projection layers, and Act(·) is
the activation function (e.g., ReLu). To enhance 3D spatial
awareness, we include a depth-wise 3D convolution after the
down-projection layer, as shown in Fig. 2B. This enhance-
ment improves the adapter’s utilization of 3D spatial cues.

Throughout the training phase, we exclusively adjust the
parameters of convolutions, spatial adapters, and normal-
ization layers, while maintaining all other parameters in a
frozen state. This frozen approach enhances memory effi-
ciency during training. Fine-tuning the adapter and normal-
ization layers aids in bridging the gap between natural im-
ages and medical images, enabling the model to adapt more
effectively to the medical image domain.

Auto Prompt Generator
The original SAM model utilizes positional embedding to
represent the prompt, applying it to both the prompt and
the image. This guarantees that prompt and image embed-
dings for the same position share identical positional encod-
ing. Subsequently, the prompt embedding engages in cross-
attention with the image embedding, evolving from posi-
tional to semantic attributes. However, this cross-attention,
though effective in 2D settings, can trigger over-smoothing
issues when extended to 3D feature maps. Adapting to 3D
can significantly inflate token numbers, leading to a uniform
probability distribution.

Prompt-based segmentation might not be suitable for real-
world applications due to two main reasons. Firstly, it be-
comes time-consuming for multi-class prompts. In situa-
tions involving multiple classes, generating prompts be-
comes a time-intensive task. Many public medical image
segmentation challenges necessitate simultaneous segmen-
tation of multiple classes. Precisely specifying prompts for
each class can be challenging, especially for small or closely
located organs or tissues. Additionally, note that segmenta-
tion performance heavily relies on the quality of provided
prompts, however, prompt quality is difficult to control since
crafting accurate prompts demands domain-specific exper-
tise, which might not be universally available. This limita-
tion hampers the effectiveness of prompt-based approaches,
particularly for non-expert users.

In pursuit of these objectives, we propose to use an Auto
Prompt Generator instead of positional encoding to repre-
sent the prompt. The whole process is illustrated in Fig. 2C.
Instead of using manually generated points or bounding



boxes, we directly take the output feature map after the
last block of attention and spatial adapter operation. This
Auto Prompt Generator follows a fully convolutional neu-
ral (FCN) based encoder-decoder design that resembles 3D
UNet (Ronneberger, Fischer, and Brox 2015). This generator
boasts a lightweight structure, leveraging 3D-based convolu-
tion operations, and can be effortlessly learned from scratch.
This enables precise prompt generation tailored to differ-
ent medical segmentation tasks. Notably, it eliminates the
need for additional manually generated prompts, simplify-
ing and expediting the multi-class medical image segmenta-
tion tasks.

Lightweight Mask Decoder
The mask decoder in SAM is intentionally lightweight, em-
ploying stacks of convolution layers. We update this design
by replacing all 2D convolutions with 3D convolutions, en-
abling direct 3D mask generation. The initial decoder, de-
void of progressive upsampling or skip connections, is effec-
tive for natural images where object sizes are generally sub-
stantial, and boundaries are distinct. Nonetheless, in the con-
text of volumetric medical image segmentation, it’s widely
recognized that U-shaped networks featuring skip connec-
tions at multiple levels are crucial (Isensee et al. 2021).
This is due to the fact that medical image objects are of-
ten diminutive, and their boundaries are frequently indis-
tinct. Consequently, such images demand networks capa-
ble of preserving higher-resolution details for improved dis-
crimination, making the adoption of U-shape architectures
with skip connections imperative.

To tackle this challenge while maintaining a lightweight
design, we utilize a multi-layer aggregation mecha-
nism (Zheng et al. 2021) in our decoder. Here, the encoder’s
intermediate outputs are concatenated, enriching the mask
feature map without compromising model efficiency. For en-
hanced resolution information, we upsample the mask fea-
ture map to match the original resolution. This upsampled
map is concatenated with the original image and fused us-
ing another 3D convolution, generating the final mask. This
strategy seamlessly integrates high-resolution details and
original image data into the mask-generation process. We
simplify the original SAM by removing multi-masks gen-
eration and ambiguity awareness, aiming to fine-tune it for
a specific downstream task. The mask decoder’s backbone
predominantly consists of lightweight 3D convolutional lay-
ers, known for their optimization-friendliness. Hence, we
train all parameters from scratch.

Knowledge Distillation
Despite our efforts to design significantly lightweight mod-
ules compared to the original SAM, there remains a chal-
lenge in reducing the initial weight complexity within
SAM’s ViT encoder segment. This encoder component
holds a significant portion of the model’s parameters, mak-
ing it difficult to seamlessly integrate the AutoSAM Adapter
into POCT.

Inspired by the simplicity of KD techniques and the avail-
ability of medical segmentation-specific model designs, we

take an additional step forward. Our objective is to trans-
fer the accumulated knowledge from the larger AutoSAM
Adapter (around 600 million parameters) to a much smaller
SwinUNETR model (around 10 million parameters). This
approach aims to bridge the gap between complex models
and resource-efficient solutions, fostering advancements in
practical medical image segmentation within the academic
realm.

Loss Function
For training the AutoSAM Adapter (as shown in Fig. 2A),
a combination of Dice loss and Cross-Entropy loss is used
to assess the alignment between the predicted mask and the
ground truth on a pixel-wise basis. The objective function
for the segmentation head is defined as follows:

Lseg = Ldice(p̂i, gi) + Lce(p̂i, gi), (1)

where p̂i represents the predicted probabilities from the
main task, and gi represents the ground truth mask for an
input volume i. The predicted probabilities, p̂i, result from
applying the AutoSAM Adapter to the input 3D volume for
the main task.

Regarding the KD process (as illustrated in Fig. 2D), we
adopt the following formulation:

Ltol = λLseg + (1− λ)Lmse, (2)

where λ serves as a hyperparameter regulating how much
the lightweight SwinUNETR model should learn from both
the prediction mask generated by the AutoSAM Adapter
and the ground truth and Lmse = 1

N

∑N
i=1(p̂i, gi)

2. This
approach enables the transfer of knowledge from the Au-
toSAM Adapter to the SwinUNETR model while striking a
balance between the two information sources.

Experiments
Datasets and Evaluation Metrics
BTCV Dataset. Beyond the Cranial Vault (BTCV) ab-
domen challenge dataset (Landman et al. 2015) includes 30
subjects with abdominal CT scans. In this dataset, 13 organs
are annotated by interpreters under the supervision of radi-
ologists at Vanderbilt University Medical Center. Each CT
scan is acquired during the portal venous contrast enhance-
ment phase and consists of 80 to 225 slices. These slices
have dimensions of 512x512 pixels, and the slice thickness
ranges from 1 to 6 mm. The multi-organ segmentation task
is framed as a 13-class segmentation challenge with 24 scans
for training and 6 scans for testing.

AMOS Dataset. We also employ the publicly accessible
AMOS2022 dataset (Ji et al. 2022). It consists of 200 multi-
contrast abdominal CT scans for training and 100 scans for
testing, sourced from AMOS 2022. These scans are anno-
tated for sixteen anatomies, enabling assessment of abdom-
inal multi-organ segmentation.

Evaluation Metrics. We utilize the Dice coefficient and
the Normalized Surface Distance (NSD) (Nikolov et al.
2018) as metrics to evaluate the segmentation performance.
The NSD metric quantifies the agreement between ground



Ground Truth Ours SwinUNETR nnFormer UNETR nnUNet

Figure 3: Qualitative visualizations of the proposed AutoSAM Adaptor (ours) and baseline methods. Three representative
subjects are demonstrated. Regions of evident improvements are enlarged to show better details of spleen (light green), left
kidney (light red), and pancreas (beige).

Model Tuned Params.
BTCV AMOS

mDice(%) mNSD(%) mDice(%) mNSD(%)

nnUNet 31.18M 84.34 73.21 87.43 77.12
nnFormer 150.14M 83.51 71.65 84.52 70.06
UNETR 93.02M 85.47 74.35 77.24 60.58
SwinUNETR 62.83M 86.58 75.26 86.19 74.83
Ours 26.53M 87.15 78.83* 88.65* 79.41*

Table 1: Comparison of the overall performance of four
SOTA approaches to AutoSAM ADapter (ours) on BTCV
and AMOS datasets, respectively. The best results are pre-
sented in bold font. (*: p < 0.01, with Wilcoxon signed-rank
test to all SOTA approaches)

truth and predicted surfaces, considering a fixed tolerance.
Unlike comparing two volumes, this metric assesses the
overlap between surface structures.

Implementation Details
We implement our approach and establish baseline compar-
isons using both PyTorch and MONAI frameworks. All ex-
periments and comparisons employ SAM-B, utilizing ViT-
B as the backbone for the image encoder. Model train-
ing is conducted with a batch size of 1 on NVIDIA A100
GPUs, utilizing the AdamW optimizer (Loshchilov and
Hutter 2017). A learning rate scheduler with exponential de-
cay, incorporating 5 epochs of warmup and a maximum of
200 epochs, is employed. The initial learning rate is set at
5e−4, with a momentum of 0.9 and weight decay of 1e−5. A
Houndsfield unit (HU) range of [−125, 275] is normalized
to the interval [0, 1] for the BTCV dataset (Tang et al. 2022).
Following the procedure outlined in (Ji et al. 2022), HU val-
ues for each scan in the AMOS dataset are clipped to the
range [−991, 362]. Subsequently, truncated voxel values are
normalized by subtracting 50 and dividing by 141. For both
datasets, all CT scans are interpolated into an isotropic voxel
spacing of [1.0 × 1.0 × 1.5] mm, and each CT scan is then
cropped to a 128 × 128 × 128 input patch for 3D models.

Data augmentation includes random flip, rotation, and in-
tensity scaling with probabilities of 0.1, 0.1, and 0.2, respec-
tively. During training, foreground and background patches
are randomly sampled at a 1 : 1 ratio. Our method’s perfor-
mance is evaluated by comparing it against SOTA volumet-
ric segmentation approaches.

Comparison with SOTA
We extensively compare our model with the SOTA 3D
medical image segmentation approaches, including the
most recent Transformer-based methods including UN-
ETR (Hatamizadeh et al. 2022), SwinUNETR (Tang et al.
2022), and nnFormer (Zhou et al. 2023), as well as CNN-
based methods such as nnUNet (Isensee et al. 2021). As re-
ported in Table 1, we observe that the proposed AutoSAM
Adapter outperforms all other SOTA methods in both Dice
and NSD metrics for both BTCV and AMOS datasets. Dis-
tinct improvements can be specifically observed for the
BTCV dataset, e.g., 1% ∼ 3% improvement for the aver-
age Dice score and 3% ∼ 7% improvement for the aver-
age NSD metric. With the increase of training samples for
the AMOS dataset compared with the BTCV dataset, the
proposed AutoSAM Adapter can even achieve better over-
all performance, i.e., 1% ∼ 14% improvement for Dice
and 2% ∼ 19% improvement for NSD. This is also evi-
dent from Fig. 3, which shows qualitative comparisons over
the predicted masks for different segmentation models. The
AutoSAM Adapter demonstrates visually better mask pre-
diction results with more accurate boundaries over the com-
peting SOTA approaches. In contrast to the original SAM,
which demonstrates subpar performance on medical image
segmentation tasks compared to the SOTA (Mazurowski
et al. 2023), our design shows significant improvements.

Comparison with Existing Adapters
We further compare our adaptation strategy with existing
adaptation methods for multi-class medical image segmen-
tation, which include 2D adaptations such as MedSAM (Ma



Model Tuned Option
BTCV AMOS

mDice(%) mNSD(%) mDice(%) mNSD(%)

SAM point None 54.86 - 49.31 -
MedSAM point P&M 80.32 66.31 70.0 58.45
MedSAM point Full 84.32 73.63 82.65 70.13
Ours P&M 87.15 78.83 88.65 79.41

Table 2: Comparison with existing existing adaptation meth-
ods. The best results are bolded. P&M: only fine-tuning the
prompt encoder and mask decoder, Full: fully fine-tuning,
and None: no fine-tuning.

and Wang 2023). Other methods are not considered since
they either do not have publicly available code or are not de-
signed for multi-organ segmentation. MedSAM can be im-
plemented with full fine-tuning or can do partial fine-tuning
by only updating the prompt encoder and mask decoder. We
also compare our AutoSAM Adapter with the original SAM.
All the pre-trained weights are from SAM-B.

The outcomes are meticulously outlined in Table 2, un-
derscoring how our adaptation strategy surpasses all existing
methods. Notably, our approach outshines the second-best
technique by a margin of 3% in terms of BTCV segmen-
tation Dice, 5% for NSD, and 6% concerning AMOS seg-
mentation Dice, accompanied by a substantial 9% for NSD.
Impressively, it even outperforms the complete fine-tuning
variant of MedSAM, even when considering parameter-
efficient fine-tuning. These results effectively validate our
hypothesis that parameters pre-trained on 2D images can be
effectively harnessed to grasp 3D spatial features with only
minor adjustments. Moreover, our approach of treating all
dimensions equivalently emerges as a superior strategy com-
pared to interpreting the depth dimension as a distinct group
in the context of medical image segmentation.

Lightweight Models via Knowledge Distillation
To address the requirement for lightweight models in the
context of POCT, we have taken a further step towards
compressing the AutoSAM Adapter into lightweight Swi-
nUNETRs (specifically, the tiny or small versions) using a
straightforward KD process, as illustrated in Fig. 2D. For
the experiments, the tuning parameter λ has been set to 0.5
for the KD learning process. Other training strategies re-
main consistent with those employed in optimizing the Au-
toSAM Adapter. The outcomes pertaining to BTCV’s av-
erage Dice scores, both with and without the utilization of
KD, are shown in Fig. 4. When compared to their KD-
absent counterparts, models incorporating KD demonstrate
a marked improvement in the average Dice scores. Specif-
ically, SwinUNETR-Tiny (with a feature size of 12 and
4.0M parameters) displays an approximate 4% enhance-
ment, while SwinUNETR-Small (with a feature size of 24
and 15.7M parameters) exhibits a comparable advancement.

Ablation Study
Effects of Auto Prompt Generator. Given that the Auto
Prompt Generator leverages feature maps from the final
stage of the attention block in the image encoder, these fea-

Model #Params. #Feature

Small 15.7M 24

Tiny 4.0M 12

Figure 4: The comparison of Dice metric on BTCV dataset
with/without using the KD for lightweight models.

ture maps can be employed as direct inputs for the mask de-
coder. We conducted a comparative analysis of performance
with and without the utilization of the Auto Prompt Gener-
ator on the BTCV dataset. The outcomes are presented in
Table 3, revealing noteworthy enhancements in both Dice
(approximately 2%) and NSD (around 3%) metrics when the
Auto Prompt Generator is employed.

Setting mDice(%) mNSD(%)

With Auto Prompt Generator 87.15 78.83
Without Auto Prompt Generator 85.23 74.12

Table 3: Comparison with/without Auto Prompt Encoder.

Effects of λ for Knowledge Distillation. By tuning
λ in Equation (2), we can change the weight for the
SwinUNETR-small learn from the ground truth of BTCV
dataset or from the AutoSAM Adapter teacher. With the in-
crease of λ, the performance increases first and decreases
after λ = 0.5 (Table 4).

λ 0 0.2 0.5 0.8 1.0

mDice (%) 78.54 82.45 83.27 81.14 79.63

Table 4: The impact of λ for the KD process.

Conclusion
In this study, we proposed AutoSAM Adapter architec-
ture for 3D-based multi-organ medical image segmentation.
Adapting the Segment Anything Model (SAM) from 2D
to 3D medical images poses challenges in domain differ-
ences, spatial disparities, computation demands, and manual
prompt generation complexities. Our approach overcomes
these hurdles through parameter-efficient adaptation tech-
niques and an automatic prompt generation framework to
simplify SAM’s application for 3D-based multi-organ seg-
mentation tasks. The knowledge gained through a KD pro-
cess also enhances the performance of other lightweight 3D
medical image segmentation models. With comprehensive
experiments, we validated the effectiveness of the proposed
AutoSAM Adapter, thereby establishing a sturdy foundation
for the advancement of image segmentation within the intri-
cate landscape of medical imaging.
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