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Abstract
Purpose: Deep learning-based networks have become increasingly popular
in the field of medical image segmentation. The purpose of this research
was to develop and optimize a new architecture for automatic segmentation
of the prostate gland and normal organs in the pelvic, thoracic, and upper
gastro-intestinal (GI) regions.
Methods: We developed an architecture which combines a shifted-window
(Swin) transformer with a convolutional U-Net. The network includes a paral-
lel encoder, a cross-fusion block, and a CNN-based decoder to extract local
and global information and merge related features on the same scale. A skip
connection is applied between the cross-fusion block and decoder to integrate
low-level semantic features. Attention gates (AGs) are integrated within the
CNN to suppress features in image background regions. Our network is termed
“SwinAttUNet.” We optimized the architecture for automatic image segmenta-
tion. Training datasets consisted of planning-CT datasets from 300 prostate
cancer patients from an institutional database and 100 CT datasets from a
publicly available dataset (CT-ORG). Images were linearly interpolated and
resampled to a spatial resolution of (1.0 × 1.0× 1.5) mm3. A volume patch
(192 × 192 × 96) was used for training and inference, and the dataset was split
into training (75%), validation (10%), and test (15%) cohorts. Data augmenta-
tion transforms were applied consisting of random flip, rotation, and intensity
scaling. The loss function comprised Dice and cross-entropy equally weighted
and summed. We evaluated Dice coefficients (DSC), 95th percentile Hausdorff
Distances (HD95), and Average Surface Distances (ASD) between results of
our network and ground truth data.
Results: SwinAttUNet, DSC values were 86.54 ± 1.21, 94.15 ± 1.17, and
87.15 ± 1.68% and HD95 values were 5.06 ± 1.42, 3.16 ± 0.93, and
5.54 ± 1.63 mm for the prostate, bladder, and rectum, respectively. Respec-
tive ASD values were 1.45 ± 0.57, 0.82 ± 0.12, and 1.42 ± 0.38 mm. For the
lung, liver, kidneys and pelvic bones, respective DSC values were: 97.90 ± 0.80,
96.16 ± 0.76, 93.74 ± 2.25, and 89.31 ± 3.87%. Respective HD95 values were:
5.13 ± 4.11, 2.73 ± 1.19, 2.29 ± 1.47, and 5.31 ± 1.25 mm. Respective ASD
values were: 1.88 ± 1.45, 1.78 ± 1.21, 0.71 ± 0.43, and 1.21 ± 1.11 mm.
Our network outperformed several existing deep learning approaches using
only attention-based convolutional or Transformer-based feature strategies, as
detailed in the results section.
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Conclusions: We have demonstrated that our new architecture combining
Transformer- and convolution-based features is able to better learn the local and
global context for automatic segmentation of multi-organ, CT-based anatomy.

KEYWORDS
3D segmentation, CT, deep convolutional network, multi-organ, transformer network

1 INTRODUCTION

In the field of radiation therapy, precise targeting of
tumor tissue while avoiding normal tissues is crucial
for successful treatment.1–3 One of the key steps in
the planning process involves segmenting the treat-
ment target and organs-at-risk (OARs) typically using
planning CT images. Currently, the clinical practice
for contour delineation involves a labor-intensive and
operator-dependent manual process.4–6 The man-
ual contouring process in addition to often being
inefficient can also suffer from inconsistencies in con-
touring preferences or related intra-and inter-observer
uncertainties.4,7 Inaccuracies in contouring impact on
planning margin design—erroneous planning mar-
gins may lead to possible underdosage of the target
and excess radiation delivered to surrounding healthy
tissues.8 To address these issues, a method for accu-
rate automatic segmentation is needed to improve
efficiency and consistency in radiation treatment
planning.

Modern automatic multi-organ segmentation mod-
els can be roughly classified into two categories:
conventional learning and deep learning-based
segmentation.3,9–11 In general, conventional learning-
based approaches for building segmentation models
have two major components12: (a) extraction of hand-
crafted features to represent target organs, and (b)
classification/regression model for segmentation. For
instance, Glocker et al.13 developed a supervised forest
model that uses both class and structural information to
jointly perform pixel classification and shape regression.
To enhance the segmentation performance, Chen and
Zheng14 selected the most important features from
the complete feature set using a hierarchical land-
mark detection method. Gao et al.15 utilized multi-task
random forests to segment prostate, bladder, rectum,
and left and right femoral heads, jointly with a dis-
placement regression task. Since these methods are
typically created using low-dimensional hand-crafted
features, their performance may be limited, particu-
larly when the training datasets suffer from limited
contrast impeding clear differentiation between organs
at the boundaries, as is sometimes encountered with
CT images.

Recently deep learning algorithms, which rely pri-
marily on fully convolutional neural networks (CNN)-
based U-net architectures16–23 have been applied to

the problem of organ segmentation for radiation treat-
ment planning.24–26 The U-Net is a popular architec-
ture and comprises an encoder and decoder, where
the encoder progressively reduces the resolution of
CT scans to generate conceptual features across
multiple scales. The decoder then reconstructs the
extracted features for multi-organ segmentation. The
U-net model incorporates skip-connections that com-
bine the encoder and decoder outputs at different
resolutions to maintain information lost during down-
sampling and improve performance. In pelvic organ
segmentation,advanced U-net algorithms utilize supple-
mentary techniques to facilitate the learning of more
informative segmentation features. These techniques
include a localization network for detecting the loca-
tion of each organ prior to pixel-level segmentation,27

a self -attention/Transformer mechanism for acquir-
ing global features,28 deep supervision for improv-
ing generality,29 and multi-task learning strategies for
capturing boundaries.30

While CNN-based U-Net’s have demonstrated
promise for medical image segmentation, they have lim-
itations in modeling global context because the learning
approach tends to be focused on local information.31

To overcome this limitation, the vision Transformer
(ViT)32 has been proposed as an effective method to
capture global dependencies and improve segmen-
tation results for object structures with varying sizes
and shapes. Studies have explored the integration of
Transformers into U-Net architectures to enhance their
performance in CT image segmentation. For instance,
Chen et al.33 used a Transformer between the encoder
and decoder of U-Net to segment 2D abdominal CT
scans and capture global context from U-Net feature
maps. Similarly, Cao et al.34 proposed a U-Net with a
shifted-window (Swin) transformer (Swin-Unet) for 2D
CT/MRI segmentation by replacing the convolutional
blocks in U-Net with Swin Transformer blocks for both
the encoder and decoder. More recently, UNETR35 and
SwinUNETR36 were proposed for a multi-organ/multi-
tumor segmentation approach on 3D CT scans. These
networks replace the CNN-based encoder with a Trans-
former or Swin Transformer in the U-Net and have
achieved state-of -the-art accuracy.34–37 However, it
is worth noting that while Transformer is effective at
modeling global context, it is limited in capturing gran-
ular details due to a lack of spatial inductive bias in
modeling local information, especially in the low data
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6992 NEW AI NETWORK FOR 3D CT SEGMENTATION

(high background) setting as is encountered with
medical images.38,39

In this work, we developed and optimized a novel
architecture, termed “SwinAttUNet” for 3D CT-based
auto-segmentation of the prostate gland and surround-
ing OAR’s,and other normal organs, including the lungs,
liver, kidneys, and pelvic bones. SwinAttUNet bridges a
3D-U-Net and a Swin Transformer to take advantage
of both architectures. SwinAttUNet includes a paral-
lel encoder, a cross-fusion block, and a CNN-based
decoder.

To our knowledge, this is the first network combin-
ing a 3D-based parallel CNN with a Transformer, along
with several other unique features, for multiple organ
segmentation. Details of the network architecture and
quantitative evaluation of the model are presented.

2 MATERIALS AND METHODS

2.1 Data acquisition and preprocessing

All experiments were implemented on a server equipped
with 8 Nvidia A100 GPUs, each with 40 GB of memory.
All experiments were conducted in the PyTorch frame-
work in Python 3.8.13, and each model was trained on
a single GPU. Data augmentation was applied during
training.

2.1.1 Institutional dataset

Pelvic Multi-Organ Segmentation Dataset: Institutional
review board (IRB) approval was obtained for this study.
Planning CT and structure datasets for 300 prostate
cancer patients were retrospectively selected. The 300
cases were randomly split into a training set of 225
cases, a validation set of 30 cases, and a testing set
of 45 cases. The testing dataset was “held out” and
therefore “unseen” relative to CT scans used for training
and validation. All CT datasets were resampled into an
isotropic voxel spacing of (1.0 × 1.0 × 1.5) mm,40 and
a Hounsfield unit (HU) range of [−50, 150] was used
and normalized to [0, 1]. Subsequently, each CT dataset
was cropped to a 192 × 192 × 64 voxel patch around
the prostate/bladder/rectum regions, used in both train-
ing and inference for the 3D models. The models were
trained for 200 epochs using the AdamW (Adaptive
Moment Estimation Weighted, a variant of Adam where
the weight decay is performed only after controlling the
parameter-wise step size) optimizer with an initial learn-
ing rate of 5e−4. An exponential learning rate scheduler
with a warmup of 5 epochs was applied to the opti-
mizer. Random flip, rotation, and intensity scaling were
used as augmentation transforms, with probabilities of
0.1, 0.1, and 0.2, respectively. The training datasets
were increased by a factor of approximately 175 using

data augmentation.The training process for 200 epochs
required approximately 16.5 h.

Ground-truth segments were available for all image
datasets consisting of physician drawn contours for the
prostate gland (target) and surrounding normal tissues
(bladder and rectum). The automatic contours gener-
ated by our network were compared to those of the
ground-truth contours to evaluate the performance of
the network.

2.1.2 Public dataset

CT Organ Segmentation Dataset (CT-ORG): A pub-
licly available dataset (CT-ORG)41 was used for training
and evaluation of our network for auto-segmentation of
other organs. Details of the CT-ORG dataset are pro-
vided by Rister et al.41 The dataset consisted of 100
CT scans,each of which included manual (ground-truth)
contours of the lungs, liver, bladder, kidney, and pelvic
bones. The first 19 CT datasets were “held out” and
used solely for testing. The remaining 81 datasets were
used for training following the process of Rister et al.41

Each CT dataset was resampled with a voxel size of
(2 × 2 × 5) mm,and input patches of size 128 × 128 × 64
were applied. Each CT dataset was truncated to HU
range of [−1000, 1000] and normalized [−1, 1] over this
range. The same augmentation and training strategy
as the institutional dataset was applied to the CT-ORG
dataset. The training process for 200 epochs required
approximately 10.5 h.

2.2 Network architecture

As depicted in Figure 1, we introduce the SwinAttUNet,
which is a 3D network and is trained using 3D CT image
datasets. SwinAttUNet includes a parallel encoder, a
cross-fusion block, and a CNN-based decoder. The par-
allel encoder consists of a CNN branch (CB) and a
Transformer branch (TB), which independently extracts
local details and global contextual information. The
cross-fusion block merges local and global features on
the same scale. The CNN-based decoder is designed
to adapt the fused information and thereby improve
model stability while maintaining performance. A skip
connection is applied between the cross-fusion block
and decoder to integrate low-level semantic features.
Attention gates (AGs) are integrated within the CNN
to suppress features in image background regions,
and focus attention to important regions of the image
(targets and OAR’s). All convolution blocks are 3D con-
volutions with a kernel size of three, and all transformer
blocks are Swin Transformers (with window-based self -
attention and shifted-window-based self -attention). We
use two blocks for both convolution and transformer
operations.
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NEW AI NETWORK FOR 3D CT SEGMENTATION 6993

F IGURE 1 (a) The architecture of SwinAttUNet for pelvic segmentation with 3D CT inputs. (b) Parallel CNN and Transformer blocks for
encoder with a cross-fusion module. (c) The architecture of two successive Swin Transformer Blocks, W-MSA, and SW-MSA are multi-head
self -attention modules with regular and shifted windowing configurations, respectively. (d) Schematic of the proposed additive AG. Input features
(xl) are scaled with attention coefficients (α) computed in AG. Spatial regions are selected by analyzing both the activations and contextual
information provided by the gating signal (g) which is collected from a coarser scale. Grid resampling of attention coefficients is done using
trilinear interpolation. AG, attention gate.

2.2.1 Swin transformer branch for 3D
inputs

Our SwinAttUNet architecture features a multi-scale
design which enables generation of hierarchical feature
maps at different stages.35,36 As illustrated in Figure 1,

the encoder takes as input an image volume X ∈

RH×W×D×C, where H, W, and D represent the spatial
height, width, and depth, respectively, and C (1 for CT
images) is the number of channels. A 3D token with a
patch resolution of (H′, W ′, D′) has a dimension of H′

× W ′ × D′ × C. The patch partitioning layer creates a
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6994 NEW AI NETWORK FOR 3D CT SEGMENTATION

sequence of 3D tokens with size H

H′
×

W

W ′
×

D

D′
that are

projected into a C′-dimensional space via an embedding
layer. To efficiently model token interactions, we partition
the input volumes into non-overlapping windows and
compute local self -attention within each region. Specif-
ically, at layer l, we use a window of size M × M × M to

evenly divide a 3D token into
⌈

H′

M

⌉
×
⌈

W ′

M

⌉
×
⌈

D′

M

⌉
win-

dows. The encoder block outputs in layers l and l +1
are computed as shown in Figure 1c, where W-MSA
and SW-MSA denote regular and shifted window par-
titioning multi-head self -attention modules, respectively.
A 3D cyclic shifting is also adopted for efficient batch
computation of shifted windowing.36,42

2.2.2 CNN branch for 3D inputs

Our CNN encoder branch composes of a series of
convolutional layers with a skip connection to improve
network stability. The use of convolutional layers in the
encoder helps to detect local patterns and features such
as edges and corners in the image. Specifically, it first
applies a convolutional layer with 36 (1 × 1 × 1) spatial
filters with stride 1 to the input data, and then passes it
through four down-sampling residual blocks.Each resid-
ual block consists of one tri-linearly down-sampled layer
followed by two 3D convolutional layers. The first convo-
lutional layer has a 1 × 1 × 1 spatial filter with stride 1 in
each direction,while the second convolutional layer uses
3 × 3 × 3 filters with the same stride. A skip connection
used in ResNet43 is applied between the outputs of the
first and second convolutional blocks.

2.2.3 Cross-fusion for two branches

To fully utilize both local and global features in our
encoder, we use a parallel structure with a CNN and
transformer blocks at each stage. To fuse these fea-
tures, we introduce a cross-fusion module (shown in
Figure 1b). This module takes two inputs with the same
shape, Fi × Hi × Wi × Di, for the i-th stage, where Fi is
the channel size. The module concatenates these two
inputs and passes them through two layers of 3 × 3 × 3
convolution with residual connections.The output of this
module is a fused feature map with the same shape as
the input, which is then used as input for the proceeding
decoding operations. This simple and efficient module
allows us to combine the strengths of both CNN and
transformer blocks in our encoder.

2.2.4 Attention-enabled decoder

Standard CNN architectures gradually down-sample
the feature-map grid to capture a large receptive field

and semantic contextual information. However, reducing
false positive predictions for small, variably shaped
objects remains challenging. To address this issue,
existing segmentation frameworks rely on separate
object localization models. Here, we propose integrating
AGs into a standard CNN model29 to achieve the same
objective without training multiple models or adding
parameters. Unlike localization models in multi-stage
CNNs, AGs progressively suppress features in irrel-
evant background regions without the need to crop
regions of interest between networks.

Additive AGs are employed to modulate feature
responses through skip connections, to determine a gat-
ing vector for each pixel enabling focus on relevant
regions at each multiscale level. Although more compu-
tationally intensive than multiplicative attention,previous
studies29 have shown that additive AGs achieve superior
predictive accuracy. An additive vector concatenation-
based attention method44 was adapted, in which the
output of the nth multi-scale encoding convolutional
block (xl) was added to the output of the (n + 1)th multi-
scale decoding convolutional block (xg), and the ReLu
activation function applied to the combined activations.
The input undergoes a channel-wise 1 × 1 × 1 convo-
lutional layer, batch normalization layer, and sigmoidal
activation layer is then multiplied and concatenated to
the input of the nth multi-scale level decoding convolu-
tional block. Figure 1(d) illustrates the attention gating
mechanism.

2.3 Performance evaluation

2.3.1 Loss functions

We utilize cross-entropy loss

CE =
1
C

i∑
k = 1

yk log ŷk (1)

and Dice loss

Dice =
1
C

C∑
k = 1

(
1 −

2
∑

i∈I yi
k ŷi

k∑
i∈I yi

k +
∑

i∈I ŷ i
k

)
(2)

for training, where C is the number of classes, I repre-
sents the whole image, yk and ŷk are the ground truth
mask and the predicted segmentation from the model of
class k, respectively. The overall loss function was cast
as an equally weighted summation:

total = CE + Dice (3)

2.3.2 Evaluation metrics

Dice score and 95% Hausdorff Distance (HD95) were
used to evaluate the accuracy of segmentation in our
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NEW AI NETWORK FOR 3D CT SEGMENTATION 6995

F IGURE 2 Segmentation result from the institutional pelvic
dataset. The input CT image of a central slice (Row 1), the ground
truth (Row 2), and the predicted segmentation from the
SwinAttUNet (Row 3), and all competing networks (Rows 4−9):
prostate (blue), bladder (green), and rectum (red).

experiments. The Dice similarity coefficient (DSC) eval-
uates the overlap of the predicted and ground truth
segmentation map

DSC =
2 |P ∩ G||P| + |G| (4)

where P indicates the predicted segmentation map and
G denotes the ground truth. A DSC of 1 indicates
a perfect segmentation while 0 indicates no overlap

at all. Hausdorff distance (HD) measures the largest
symmetrical distance between two segmentation maps

dH (P, G) = max{sup
p∈P

inf
g∈G

d (p, g) , sup
g∈G

inf
p∈P

d (p, g)} (5)

where d(⋅) represents the Euclidean distance, sup and
inf denote supremum and infimum, respectively.

We also include the Average Surface Distance (ASD),
Average of all the distances from points on the boundary
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6996 NEW AI NETWORK FOR 3D CT SEGMENTATION

of the auto-contour to the boundary of the ground truth
contour:

ASD =
1|(S (P)|

(∑
p∈P

d(S (p) , S (G))

)
(6)

where, d((S(p),S(G)) is the shortest distance of a pre-
dicted voxel S(p) to the set of ground truth surface
voxels, S(G).

2.3.3 Methods for comparison

The performance of SwinAttUNet was compared
against multiple state-of -the-art segmentation mod-
els. For FCN-based models, V-Net,17 ResUNet,45

AttUNet,44 and nnUNet19 were used for compari-
son using both the institutional and public CT image
datasets.For Transformer-based models,UNETR35 and
SwinUNETR36 were selected for comparison. P val-
ues were computed using the Mann–Whitney U-test46

to evaluate statistical significance between contours
predicted using SwinAttUNet and the next highest per-
forming network. The significance level was set at
0.05, where p < 0.05 indicates statistically significant
difference between the two networks.

To validate the effectiveness of the SwinAttUNet
architecture, we ran an ablation experiment using the
institutional pelvic dataset. We first removed the AG to
demonstrate the benefits of AG in the decoding process.
We then replaced the parallel encoder with only the CB
or TB and compared each of these iterations against the
full SwinAttUNet network.

3 RESULTS

Qualitative comparisons of auto-contours generated
with SwinAttUNet, and other networks are presented
in Figures 2 and 3. Figure 2 shows results for four
example cases based on the institutional pelvic dataset.
Contours are shown in the axial view for the ground-
truth (GT, Row 2), SwinAttUNet (Row 3), and competing
networks (Rows 4−9), for the prostate gland (blue),blad-
der (green), and rectum (red). Careful inspection of the
shapes of these contours and the boundary distances
between the different organs (relative to the ground-
truth segments, Row 2) shows that the SwinAttUNet
performs better than all other networks for all four exam-
ple cases.Figure 3 shows results for five example cases
based on the public dataset (CT-ORG). Contours are
depicted for the ground-truth (GT, Row 1), SwinAttUNet
(Row 2), and competing networks (Rows 3−8) for the
lungs (yellow),liver (green),kidney (cyan),bladder (blue),
and pelvic bones (purple). While all networks produce
accurate for contours of the liver, lung, kidney, and pelvic

TABLE 1 Ablation Study: DSC, HD95, and ASD with the different
settings for SwinAttUNet on the institutional pelvic dataset.

Organ Method DSC (%) ↑ HD95 (mm) ↓ ASD (mm) ↓

Prostate w/o AG 86.12 ± 1.45 5.23 ± 1.50 1.51 ± 0.63

w/o CB 85.36 ± 2.43 6.15 ± 1.46 1.62 ± 0.67

w/o TB 84.69 ± 2.51 5.76 ± 1.43 1.56 ± 0.59

Full model 86.54 ± 1.21 5.06 ± 1.42 1.45 ± 0.57

Bladder w/o AG 93.72 ± 4.31 3.18 ± 1.26 0.85 ± 0.61

w/o CB 93.51 ± 3.32 3.25 ± 1.33 0.93 ± 0.43

w/o TB 93.24 ± 4.16 3.42 ± 1.37 0.86 ± 0.36

Full model 94.15 ± 1.17 3.16 ± 0.93 0.82 ± 0.12

Rectum w/o AG 86.31 ± 2.12 5.74 ± 1.94 1.53 ± 0.51

w/o CB 86.25 ± 1.83 6.11 ± 2.07 1.61 ± 0.68

w/o TB 85.49 ± 2.08 5.83 ± 1.85 1.53 ± 0.51

Full model 87.15 ± 1.68 5.54 ± 1.63 1.42 ± 0.38

Note: Shown are mean ± SD for three experiments for each setting for the
prostate gland, bladder, and rectum. The most accurate results are shown in
bold font.
Abbreviations: AG, Attention Gate; ASD, Average Surface Distances; CB, CNN
Branch;DSC,dice coefficients;HD95,95% Hausdorff Distance;TB,Transformer
Branch.

bones, the SwinAttUNet is shown to produce the best
contours for all organs, including the bladder where dis-
crepancies were noted with the other networks relative
to the ground-truth segments.

3.1 Ablation study

To assess the contribution of the AG, CB, and TB on
the segmentation performance, a comparison was per-
formed between the results obtained with the SwinAt-
tUNet (full model) and the network configurations
without AG, CB, or TB. Table 1 presents the segmen-
tation results for these three different experiments. The
SwinAttUNet (full model) shows superior results for all
metrics, DSC, HD95, and ASD for the prostate, bladder,
and rectum. The contribution of the various modules
of the SwinAttUNet is clearly demonstrated by infe-
rior results when the AG, CB or TB are removed from
the network architecture, justifying the need for each
module toward the overall accuracy of the SwinAttUNet
network.

3.2 SwinAttUNet network trained on
institutional dataset for pelvic organ
segmentation

Quantitative results for the SwinAttUNet and other
networks trained on the institutional dataset for seg-
mentation of pelvic organs are provided in Table 2.Data
are shown for the DSC (%), HD95 (mm) and ASD (mm)
for the prostate, bladder, and rectum. p-values are also
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NEW AI NETWORK FOR 3D CT SEGMENTATION 6997

F IGURE 3 Segmentation result from CT-ORG dataset. The selected region of interest of each organ from manual contours (Row 1), the
SwinAttUNet (Row 2), and all competing networks (Rows 3−8): lungs (yellow), liver (green), kidney (cyan), bladder (blue), and bones (purple).

included for comparison between the SwinAttUNet and
the next highest accuracy network at the 0.05 signifi-
cance level. For the DSC comparison, the SwinAttUNet
outperforms all other networks with values of 86.5%
(prostate), 94.2% (bladder) and 87.2% (rectum). The
HD95 (mm) values were also lowest for our SwinAt-
tUNet relative to other networks. Statistically significant
differences (p < 0.001) were observed in the DSC and
HD95 (mm) values for our network (SwinAttUNet) ver-
sus SwinUNETR for all organs. Apart from the prostate,
SwinAttUNet ASD (mm) values outperformed those of
all other networks.

For the prostate, the ASD values were 1.40 mm (Swi-
nUNETR) and 1.45 mm (our SwinAttUNet), however, the
difference was not statistically significant (p = 0.076).
Moreover, the standard deviation of the prostate ASD

with SwinAttUNet (0.57 mm) was lower than that of
SwinUNETR (0.65 mm).

3.3 SwinAttUNet network trained on
public dataset (CT-ORG) for multiple organ
segmentation

Quantitative results for the SwinAttUNet and other net-
works trained on the CT-ORG dataset for segmentation
of multiple organs are provided in Table 3. Data are
shown for the DSC (%), HD95 (mm) and ASD (mm)
for the lungs, liver, kidneys, bladder, and pelvic bones.
DSC values are consistently the highest for the SwinAt-
tUNet versus all other networks with values of 97.9%
(lungs), 96.2% (liver), 93.7% (kidneys), 88.6% (bladder),
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6998 NEW AI NETWORK FOR 3D CT SEGMENTATION

TABLE 2 Quantitative results for networks trained on the institutional pelvic dataset.

Organ Method DSC (%) ↑ HD95 (mm) ↓ ASD (mm) ↓

Prostate V-Net 83.27 ± 2.71 7.75 ± 2.58 2.12 ± 0.73

ResUNet 84.15 ± 2.61 5.79 ± 1.63 1.74 ± 0.89

AttUNet 84.26 ± 2.54 5.81 ± 1.56 1.58 ± 0.65

nnUNet 84.12 ± 2.68 5.83 ± 2.01 1.81 ± 0.79

UNETR 82.51 ± 4.46 8.92 ± 2.65 2.34 ± 1.01

SwinUNETR 85.71 ± 2.32 6.10 ± 1.42 1.40 ± 0.65

SwinAttUNet (ours) 86.54 ± 1.21 5.06 ± 1.42 1.45 ± 0.57

p-values < 0.001 < 0.001 0.076

Bladder V-Net 91.56 ± 5.21 6.75 ± 2.01 1.62 ± 0.52

ResUNet 92.65 ± 4.52 4.46 ± 1.84 1.13 ± 0.24

AttUNet 93.31 ± 4.23 3.25 ± 1.21 0.87 ± 0.54

nnUNet 93.46 ± 5.03 4.83 ± 1.59 1.16 ± 0.46

UNETR 89.37 ± 5.67 6.34 ± 2.56 1.78 ± 0.67

SwinUNETR 93.62 ± 3.25 3.22 ± 1.14 0.91 ± 0.34

SwinAttUNet (ours) 94.15 ± 1.17 3.16 ± 0.93 0.82 ± 0.12

p-values < 0.001 < 0.001 < 0.001

Rectum V-Net 83.71 ± 3.52 7.12 ± 2.54 2.11 ± 0.61

ResUNet 86.02 ± 2.34 6.31 ± 2.24 1.58 ± 0.46

AttUNet 86.63 ± 2.01 5.81 ± 1.95 1.44 ± 0.49

nnUNet 86.53 ± 2.18 6.14 ± 2.35 1.61 ± 0.62

UNETR 82.16 ± 4.87 9.76 ± 2.45 2.43 ± 1.10

SwinUNETR 85.52 ± 2.24 6.12 ± 1.97 1.47 ± 0.61

SwinAttUNet (ours) 87.15 ± 1.68 5.54 ± 1.63 1.42 ± 0.38

p-values < 0.001 < 0.001 < 0.001

Note: DSC, HD95, and ASD values represent the mean ± SD for the networks including SwinAttUNet (ours), VNet, ResUNet, AttUNet, nnUNet, UNETR, and Swi-
nUNETR. The most accurate results are shown in bold font. p-values are presented to statistically compare the SwinAttUNet against the next highest performing
network.
Abbreviations: ASD, Average Surface Distances; DSC, dice coefficients; HD95, 95% Hausdorff Distance.

and 89.3% (pelvic bones). Statistically significant DSC
differences (p < 0.001) were observed for the SwinAt-
tUNet relative to the SwinUNETR network. Moreover,
DSC standard deviations were significantly reduced
on segments produced with SwinAttUNet relative to
other networks. For instance, the bladder DSC SD was
7.9 mm for SwinAttUNet, while it was >11.5 mm for
all other networks. HD95 (mm) values were lowest for
our SwinAttUNet relative to other networks for the liver
and pelvic bones with statistical significance achieved
(against SwinUNETR) for the liver (p< 0.001) and pelvic
bones (p = 0.005). For the lungs, SwinAttUNet HD95
mean value was 5.13 mm while it was slightly better
with SwinUNETR (4.95 mm) though the difference was
not statistically significant (p = 0.89). For the kidneys,
SwinAttUNet HD95 mean value was 2.29 mm while it
was 2.12 mm for the AttUNet network but not statisti-
cally different (p= 0.65).For the bladder, the HD95 mean
value was 7.68 mm for the V-Net slightly better than
8.23 mm for the SwinAttUNet network for but not sta-

tistically different (p = 0.67).ASD values were lowest for
all organs with our SwinAttUNet network with statistical
significance consistently achieved. ASD SD’s were also
significantly improved with SwinAttUNet. For instance,
ASD SDs for liver were reduced to 0.24 mm with SwinAt-
tUNet compared with all other networks where the SDs
were generally >0.7 mm, suggesting lower variability
and higher consistency in the predicted contours with
our network.

4 DISCUSSION

In this work, we propose a U-shaped hierarchically fus-
ing architecture called SwinAttUNet for 3D CT-based
multi-organ segmentation. The SwinAttUNet consists of
three main components:a convolutional encoder branch
for extracting fine local features at different resolutions,a
Swin Transformer encoder branch in parallel for enrich-
ing global information at each resolution level, and a set
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NEW AI NETWORK FOR 3D CT SEGMENTATION 6999

TABLE 3 Quantitative results for networks trained on the public (CT-ORG) multi-organ dataset.

Organ Method DSC (%) ↑ HD95 (mm) ↓ ASD (mm) ↓

Liver V-Net 94.13 ± 2.54 6.48 ± 2.32 1.73 ± 0.63

ResUNet 94.81 ± 1.81 5.74 ± 3.43 1.42 ± 0.87

AttUNet 95.23 ± 1.72 4.53 ± 1.67 1.26 ± 0.75

nnUNet 94.78 ± 1.95 6.21 ± 4.02 1.38 ± 0.84

UNETR 94.01 ± 2.34 6.83 ± 4.21 5.58 ± 3.54

SwinUNETR 94.81 ± 2.34 4.85 ± 2.63 1.97 ± 1.65

SwinAttUNet (ours) 96.16 ± 0.76 2.73 ± 1.19 1.08 ± 0.24

p-values < 0.001 < 0.001 0.004

Bladder V-Net 83.24 ± 11.75 7.68 ± 4.32 2.56 ± 0.97

ResUNet 82.48 ± 12.24 9.73 ± 6.85 3.12 ± 1.54

AttUNet 84.87 ± 11.86 8.56 ± 6.53 2.15 ± 1.17

nnUNet 85.26 ± 12.58 10.21 ± 8.57 2.53 ± 2.64

UNETR 82.13 ± 13.65 10.02 ± 5.84 2.86 ± 2.13

SwinUNETR 83.67 ± 13.15 8.76 ± 6.21 2.24 ± 1.35

SwinAttUNet (ours) 88.62 ± 7.91 8.23 ± 8.01 1.78 ± 1.21

p-values < 0.001 0.673 < 0.001

Lungs V-Net 95.63 ± 4.36 15.61 ± 8.84 2.89 ± 0.86

ResUNet 95.82 ± 5.27 6.64 ± 15.76 3.12 ± 4.42

AttUNet 96.87 ± 5.13 5.99 ± 11.97 3.31 ± 2.37

nnUNet 95.63 ± 6.85 8.57 ± 5.12 3.53 ± 6.56

UNETR 93.68 ± 13.64 15.25 ± 19.40 8.37 ± 9.06

SwinUNETR 95.99 ± 9.30 4.95 ± 4.37 2.56 ± 1.63

SwinAttUNet (ours) 97.90 ± 0.80 5.13 ± 4.11 1.88 ± 1.45

p-values < 0.001 0.893 < 0.001

Kidney V-Net 88.15 ± 3.25 4.45 ± 1.87 2.14 ± 3.32

ResUNet 92.03 ± 3.40 3.26 ± 1.32 0.95 ± 0.75

AttUNet 92.85 ± 3.73 2.12 ± 1.14 0.83 ± 0.58

nnUNet 93.41 ± 3.92 3.11 ± 5.73 1.01 ± 0.78

UNETR 88.96 ± 4.88 6.36 ± 9.03 3.18 ± 3.59

SwinUNETR 91.87 ± 3.41 3.37 ± 1.24 0.94 ± 0.66

SwinAttUNet (ours) 93.74 ± 2.25 2.29 ± 1.47 0.71 ± 0.43

p-values < 0.001 0.653 < 0.001

Bones V-Net 86.45 ± 2.17 8.76 ± 3.21 2.22 ± 3.28

ResUNet 88.61 ± 4.95 5.58 ± 5.87 1.44 ± 1.23

nnUNet 88.63 ± 4.57 5.67 ± 6.12 2.19 ± 2.67

UNETR 86.85 ± 6.39 8.78 ± 9.03 4.72 ± 4.90

SwinUNETR 88.97 ± 4.80 5.63 ± 6.03 2.43 ± 2.44

SwinAttUNet (ours) 89.31 ± 3.87 5.31 ± 1.25 1.21 ± 1.11

p-values < 0.001 0.005 0.023

Note:The Table shows results for the DSC,HD95,and ASD (mean± SD) for the networks, including SwinAttUNet (ours),VNet,ResUNet,AttUNet,nnUNet,UNETR,and
SwinUNETR. The most accurate results are shown in bold font. p-values are presented to statistically compare the SwinAttUNet against the next highest performing
network.
Abbreviations: ASD, Average Surface Distances; DSC, dice coefficients; HD95, 95% Hausdorff Distance.
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of AG-regulated, up-sampling convolutional blocks for
reconstruction of features into an N-class segmentation.
Our network is novel in that the transformer layers effec-
tively capture global information in parallel with the CNN
layers for each resolution level, overcoming the recep-
tive field limitations of pure fully convolutional networks
(FCN’s). Additionally, the novel AGs enable effective
interaction of extracted features from different resolution
levels,as evidenced by the ablation study.The proposed
network demonstrates promising segmentation perfor-
mance compared to current state of-the-art methods
for auto-segmentation of organ contours in multiple
regions of the body including the pelvis, thorax, and
gastro-intestinal (GI). The superior DSC, HD95, and
ASD results of our proposed network highlight the
advantages of parallelizing the CNN and Swin Trans-
former layers in the encoding stage for CT-based
multi-organ segmentation.

Relative to our network other CNN-based models with
more complex architectures and ground truth segmen-
tations based on multi-modal imaging information were
able to achieve similar accuracies. An example of this is
a study by Dong et al.,47 where the investigators utilized
a Cycle-GAN for 3D CT-to-synthetic MRI synthesis and
trained the segmentation network on the synthetic MRI
(sMRI) scans.They reported Dice scores of 0.87 ± 0.04
for the prostate, and 0.95 ± 0.03 for the bladder using
140 pelvic image datasets. Similarly, other investigators
used networks such as GAN for CT-to-sMRI synthesis48

(with Dice scores of 0.90 ± 0.05 for rectum) and
2D organ localization networks27 (with Dice scores of
0.95 ± 0.02 for bladder). In the context of postopera-
tive prostate cancer,Balagopal et al.49 developed a deep
learning network (2D U-Net) for auto-segmentation of
the clinical target volume (CTV) incorporating uncer-
tainty.The training dataset consisted of 340 patients with
post-operative prostate cancer, with ground-truth con-
tours drawn by physicians. A DSC value of 0.87 was
reported for a holdout dataset (50 patient CT images).
Balagopal et al.50 also developed a deep learning net-
work (based on a 3D-CNN), PSA-Net, for segmentation
of the CTV trained to incorporate differences in physi-
cian preferences during segmentation. For training, 373
postoperative prostate cancer CT image datasets were
employed. Questions such as consistency in physician
contouring preferences and whether inter-user varia-
tion in segmentation affects treatment outcomes were
addressed. DSC values of 0.87 were reported for their
network.

There are a few limitations to be noted. We trained
our network on two independent (institutional and public
datasets) training datasets because the ground-truth
labels/contours were not available for the same organs
on these datasets. If contours were available for the
same set of organs, it would have become feasible to
train the network with just one training dataset, which
may be more practical for clinical application. The

generalization error of a network is best tested using
“unseen” datasets from an independent institution, as it
tests the robustness of the network to variation associ-
ated with multiple factors, such as image intensity and
contrast, patient anatomy, inter-observer differences in
ground truth contours of expert annotators, etc.

As part of future research, we intend to evaluate
the network using ‘unseen’ datasets from independent
institutions. We will also incorporate advanced tech-
niques/networks to enhance segmentation accuracy of
SwinAttUNet. For instance, we propose to extend the
parallel CNN and Transformer into the decoding pro-
cess, which has potential to increase segmentation
accuracy. Our network is efficient. Apart from the train-
ing phase (which requires >10 h but is done prior to
clinical application), the network is fast, requiring about
5 s/case for routine multi-organ contour generation,
thereby facilitating auto-segmentation for procedures
such as on-table adaptive treatment. We are investi-
gating techniques to automatically detect and correct
outliers from either manually (user-defined) or auto-
matically generated contours using this network. These
tools are likely to be of value toward the overall quality
assurance of target and normal organ segmentation in
radiation treatment planning.

5 CONCLUSION

This study introduces a segmentation network that
leverages a novel parallel encoding approach, com-
bining advantages from both CNN and Transformer
encoders with self -attention, for multi-organ, 3D-CT
auto-segmentation.The proposed method generally sur-
passes VNet and other state-of -the-art models for
auto-contouring. The network exhibits potential as an
accurate and efficient tool for facilitating automatic seg-
mentation for procedures, such as radiation treatment
planning.
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