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Abstract

In the past decade, growing interest in microribonucleic acids (miRNAs) has catapulted these 

small, non-coding nucleic acids to the forefront of biomarker research. Advances in scientific 

knowledge have made it clear that miRNAs play a vital role in regulating cellular physiology 

throughout the human body. Perturbations in miRNA signaling have also been described in 

a variety of pediatric conditions – from cancer, to renal failure, to traumatic brain injury. 

Likewise, the number of studies across pediatric disciplines that pair patient miRNA-omics with 

longitudinal clinical data are growing. Analysis of these voluminous, multivariate data sets require 

understanding of pediatric phenotypic data, data science, and genomics. Use of machine learning 

techniques to aid in biomarker detection have helped decipher background noise from biologically 

meaningful changes in the data. Further, emerging research suggests that miRNAs may have 

potential as therapeutic targets for pediatric precision care. Here, we review current miRNA 

biomarkers of pediatric diseases and studies that have combined machine learning techniques, 

miRNA-omics, and patient health data to identify novel biomarkers and potential therapeutics for 

pediatric diseases.
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Introduction

MiRNA Physiology

Two decades ago, it was not clear that miRNAs played an integral role in human physiology, 

nor that they were dysregulated in pathologic states.1 Today, miRNA expression has been 

characterized in nearly every tissue and biofluid in the human body.2,3 Perturbations 

in miRNA expression have been described in the vast majority of organ systems.4 

The relationship between miRNA physiology and human health and disease stems from 

the critical role of miRNAs in regulating translation of messenger RNA (mRNA) into 

proteins.5,6 Primary miRNAs are stem-loop structures initially transcribed from intergenic or 

intronic regions of the genome (Figure 1).7 They are cleaved into precursor miRNA in the 

nucleus (by the microprocessor complex), exported to the cytoplasm as a miRNA:miRNA 

duplex (by Exportin-5), and then cleaved again into mature miRNA by Dicer.8 Mature 

miRNAs are single-stranded, short RNA fragments (17–23 base-pair) that are incorporated 

into the RNA-induced silencing complex, where they can bind complementary segments 

of mRNA. Argonaute proteins within the RNA-induced silencing complex facilitate 

endonuclease cleavage of mRNA, or inhibition of translation, depending upon the degree 

of miRNA:mRNA base pairing.9 Pairing of mature miRNAs with mRNA targets depends 

upon the miRNA seed sequence, a 2–8 base pair region on the 5’ end of the miRNA. It 

is important to note that: 1) several miRNAs can have overlapping seed sequences; and 

2) miRNAs do not require 100% complementarity with mRNA targets.5 This means that 

several miRNAs can target the same mRNA, and a single miRNA can target numerous 

mRNAs. Collectively, these traits make miRNAs potent regulators of cellular physiology, 

and ideal candidates for biomarker development and drug discovery.10,11

MiRNAs as Diagnostic and Prognostic Biomarkers

Newborn screening identifies known mutations of metabolic enzyme deficiencies, specific 

hemoglobinopathies, various endocrine disorders, and hearing loss. In most regions of the 

United States, newborns are screened for over 60 conditions within hours of birth.12 In 

contrast, the list of biologic screening tools for non-Mendelian disorders presenting in 

childhood is relatively small13,14, compared with the enormous array of pathology that may 

arise. The development of novel molecular markers could enable early detection, targeted 

intervention, and personalized treatment of many pediatric conditions. Such an approach 

would not necessarily be limited to the newborn period, and could represent a significant 

advance from current testing paradigms. For example, erythrocyte sedimentation rate (ESR) 

is a measure of rouleaux formation that has frequently been used to screen for inflammation 

in diseases of childhood for the past century.15 ESR is elevated in infectious diseases, 

auto-immune conditions, neoplasms, kidney failure, and even pregnancy.16 Despite its non-

specific nature, ESR continues to be widely used as a biomarker of pediatric pathology. 

Strategic replacement of ESR testing with targeted biomarkers for each of these disparate 

conditions could dramatically improve medical care.

Ideally, biomarkers should be inexpensive, collected through non-invasive techniques, 

rapidly measurable, and easily interpreted by general clinicians.17,18 Ideal biomarkers 

should also have high sensitivity, providing utility as a screening tool, and allowing early 
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detection of emerging pathology. miRNA physiology satisfies many of these criteria.5,19 

miRNAs are present in biofluids throughout the human body.2 Stability of miRNA levels 

within these fluids results from their small size, which helps protect them from degradation 

by ribonucleases.20 This characteristic also provides resistance to formalin fixation, yielding 

utility in pathologic specimens. Because miRNAs are so small, they can easily be 

transported across biofluid spaces, such as the blood brain barrier.21,22 This means that 

miRNAs originating from organs that otherwise require invasive sampling (e.g., the central 

nervous system) can be measured through non-invasive biofluid collection.23 Intercellular 

and cross-tissue transport is further enhanced by encapsulation of miRNAs within exosomes 

and other micro-vesicles.22 Protein signatures on vesicles may be used to confirm the 

“tissue-of-origin” for miRNA cargo, yielding tissue-specific biomarkers.23 Measurement 

of miRNAs can be achieved with standard lab assays, such as quantitative polymerase 

chain reaction (qPCR).24 qPCR can detect miRNAs at pico-molar levels, and is already 

utilized for many clinical assays. Because miRNA transcription occurs rapidly in response 

to environmental stimuli (minutes-to-hours),25,26 application of miRNA biomarkers is not 

limited to diagnoses. Tracking miRNA dynamics may ultimately serve as a valuable tool for 

prognostic and therapeutic monitoring as well.10

Current miRNA Biomarkers of Pediatric Diseases

There are numerous pediatric diseases that currently rely on subjective, invasive, or costly 

assessments, making them amenable to miRNA-based diagnostics. Here, we highlight 

seven conditions with miRNA biomarker candidates that have matured beyond initial 

pilot explorations to external validation studies. These seven conditions were chosen to 

underscore the potential of miRNA diagnostics to impact organ systems throughout the 

human body (Figure 2A).

Autism Spectrum Disorder—The diagnostic workup for autism spectrum disorder 

(ASD) is currently relies on screening tools whose poor specificity contributes to long 

wait times for subjective assessments by developmental specialists.27 ASD is felt to arise 

from interactions between a child’s underlying genetics and environmental exposures.28 The 

ability of miRNAs to direct degradation of aberrant mRNAs, or to down-regulate mRNAs 

involved in key neurologic pathways after an environmental insult, makes miRNAs ideal 

biomarker candidates for ASD. Indeed, over 20 studies have now characterized dysregulated 

miRNA expression in the brain, blood, and saliva of children with ASD.29–31 The largest of 

these studies involved 443 children, ages 2–6 years, and demonstrated that a panel of four 

saliva miRNAs (miR-28-3p, miR-148a-5p, miR-151a-3p, miR-125b-2) could differentiate 

children with ASD from peers with typical development or developmental delay.32 This 

served as the basis for the first Certified Laboratory Improvement Amendment (CLIA) test 

utilizing miRNA levels (in parallel with other non-coding RNAs) to aid ASD assessment in 

children.33

Asthma—The diagnosis of asthma is based on clinical examination and expiratory 

airflow limitation on pulmonary function testing.34 However, the inability of young 

children to complete pulmonary function tests, is a major drawback to the current 

approach. In vitro studies utilizing respiratory epithelium, T-cells, and eosinophils have 

Li et al. Page 3

Pediatr Res. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



clearly demonstrated the importance of miRNAs in regulating the inflammatory milieu 

of asthma.35,36 Several studies have shown that serum levels (miR-1248)37 and blood 

levels (miR-221, miR-485)38 of certain miRNAs may be used to differentiate individuals 

with asthma from healthy controls. Serum miRNA profiles have also shown promise for 

prognosis (miR-146b, miR-206, and miR-720 associated with exacerbation occurrence),39 

and therapeutic monitoring (miR-133, miR-155, miR-126-3p associated with regulation of 

Th2 endotype expression).40

Traumatic Brain Injury—School age children and adolescents suffer a disproportionate 

burden of concussions, and there is growing public awareness regarding the post-injury 

sequelae associated with traumatic brain injuries (TBI).41 Nonetheless, diagnosis of 

concussion relies predominantly on subjective symptom reports. Growing evidence suggests 

that miRNAs may aid concussion diagnoses, predict duration and character of symptoms, 

and inform decisions about safe return to activities.42–44 A study involving 538 adolescents 

and young adults demonstrated that ratios of seven salivary non-coding RNAs (including 

miRNAs) could differentiate participants with concussion from peers with concussion-like 

symptoms with similar accuracy to balance testing, cognitive testing, or subjective symptom 

reports.45 The seven non-coding RNAs included miR-34a-5p, miR-192-5p, miR-27a-5p, and 

miR-4510 (as well as several small nucleolar and piwi-interacting RNAs). Three of these 

miRNAs (miR-34a-5p, miR-192-5p, miR-27a-5p) have been identified in multiple studies 

of individuals with TBI. Although current guidelines for pediatric concussion assessment 

do not recommend the use of biomarkers in routine clinical practice, miRNAs may soon 

comprise a novel option in the concussion toolbox.

Pediatric Acute Lymphoblastic Leukemia—In the past century, significant 

improvement in mortality rates for pediatric acute lymphoblastic leukemia (ALL) have 

been driven by the ability to identify patient sub-types and stratify treatment approaches.46 

Increasingly, sub-typing is being accomplished through high throughput RNA sequencing,47 

which has opened a new window into previously unidentified mutations associated with 

ALL.48 MiRNA patterns may help differentiate ALL from acute myelogenous leukemia, 

aid identification of T-cell and B-cell lineage, and confer information about drug resistance, 

providing a prognostic tool for predicting risk of relapse.49 Further, the miR-181 family was 

shown to differentiate CNS-positive and CNS-negative ALL in pediatric CSF samples.50 

Studies of miRNA expression in ALL are relatively large in number and scope, however, 

much of the research in this space is focused on harnessing miRNAs as therapeutic 

targets.51–53

Pediatric Inflammatory Bowel Disease—Inflammatory bowel disease (IBD), such 

as Crohn’s disease, relies on non-specific inflammatory markers for initial screening in 

children with gastrointestinal symptoms, and requires invasive procedures for a diagnosis 

that lacks a universal gold-standard.54 Nearly thirty studies have characterized miRNA 

expression in the blood, stool, and gastrointestinal mucosa of patients with IBD.55 The 

largest of these studies examined serum miRNA levels in 527 adult participants, and found 

levels of miR-146b-5p to be more accurate for differentiating IBD than C-reactive protein.56 

There are fewer studies focused on miRNA levels in pediatric IBD,57 however, mounting 
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evidence suggests miRNAs may provide valuable information about pathology location, 

severity, and treatment response.58–60

Type 1 Diabetes Mellitus—There has been a surprising increase in the prevalence of 

Type 1 Diabetes Mellitus (TD1M) among pediatric patients, with over 1.1 million children 

world-wide suffering from this disorder in 2017.61 Currently the diagnosis of T1DM relies 

on the emergence of symptoms, which can be sudden and fatal.10 A study of children with 

new onset T1DM identified circulating miRNAs that are perturbed with elevations in serum 

glucose (miR-375).62 Some miRNAs appear to reflect auto-antibody status (miR-93)63,64, 

oral glucose tolerance (miR-146b, miR-151a)63, and glycosylated hemoglobin (miR-25)65 

in children at risk for T1DM. Urinary levels of several miRNAs have also demonstrated 

promise for detection of diabetic nephropathy, with specific miRNAs reflecting estimated 

glomerular filtration rate.65,66 Thus, miRNA levels may be used for early detection of 

T1DM, therapeutic monitoring, or even prediction of microvascular sequelae.

Bronchopulmonary Dysplasia—Bronchopulmonary dysplasia (BPD) is a common 

condition among extremely premature infants that carries high mortality and can lead to 

chronic lung dysfunction. The pathophysiology of BPD is not completely understood, which 

hinders accurate diagnosis, prognosis, and treatment. Levels of miRNAs in blood, plasma, 

tracheal aspirates, and saliva may be perturbed in neonates with BPD.67–69 Early studies 

suggest miRNA levels are associated with severity of BPD and can be used to predict 

long-term outcomes.70–72 It remains to be seen how these potential markers respond to 

therapy and whether they normalize over the course of recovery.

Machine Learning Methods for Pediatric Disease miRNA Biomarker Discovery

Despite the growing evidence that miRNAs play an essential role in pediatric diseases, 

relying completely on labor-intensive, and time-consuming wet lab experiments to discover 

miRNA biomarkers is a daunting task. With the advent of high-throughput miRNA 

expression profiling technology, classic machine learning approaches have streamlined 

the identification and functional characterization of miRNA biomarkers.73 These popular 

machine learning methods have focused on improving model classification performance 

measured by area under the receiver operating characteristic curve (AUROC) using features 

extracted from miRNA profiles. Variations of these linear techniques, such as support vector 

machine (SVM) and random forest, are the most widely used machine learning methods 

in miRNA research.74 These methods have been used in development of pediatric disease 

miRNA biomarkers across disciplines, such as ASD and developmental delay, hand-foot-

mouth disease (HFMD), acute lymphoblastic leukemia (ALL), and celiac disease (CD). As 

discussed later, novel and advanced deep learning methods are beginning to appear in the 

field as well.

Traditional Machine Learning Techniques

AUROC, Radial Kernel SVM and LASSO—Although miRNAs exist in many human 

biofluids, there is strong parental preference for medical tests that measure miRNAs with 

non-invasive collection techniques. This is especially true in vulnerable populations, such 

as children with ASD. A study using non-invasive saliva collection in children with ASD 
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harnessed radial kernel SVM to distinguish ASD (total of 456 children) by measuring 

five families of salivary RNAs (i.e., miRNA, piwi-interacting RNA, long non-coding RNA, 

ribosomal RNA, and microbial RNA).33 Across each of these 5 RNA types, 32 salivary 

RNA features (12 microbial taxa, 7 mature miRNAs, 4 precursor miRNAs, 8 piRNAs and 

1 snoRNA) were used to differentiate 188 children with ASD from 184 non-ASD peers 

with typical development or non-ASD developmental delay. The 32 salivary RNA features 

were identified by pairing the top ranked RNAs from each category with transformed 

demographic data and fit to a stochastic gradient-boosted model. To verify that the 

classifier algorithm performance was not biased by patient characteristics, differences in 

age, sex, race, BMI and Vineland adaptive behavior social scales were assessed between 

correctly and incorrectly classified children. The least absolute shrinkage and selection 

operator (LASSO) regularized logistic regression methods75 was also applied to infer 

the functional association between known ASD-associated copy number variations, single 

nucleotide variants (SNPs), and 11 miRNA biomarker features (miR-106-5p, miR-10a, 

miR-125a-5p, miR-146a, miR-146b, miR-146b-5p, miR-361-5p, miR-378a-3p, miR-3916, 

miR-410, miR-92a-3p).

The diagnosis of HFMD is made clinically based on the appearance and location of oral 

exanthem. However, a biologic test may be warranted if there is diagnostic uncertainty. 

Min et al. used both traditional AUROC and radial kernel SVM methods to identify 

miRNA biomarkers in hospitalized pediatric patients with HFMD obtained via oral swab.76 

Two ethnically diverse cohorts were collected: a cohort of HFMD and control participant 

samples from Singapore (n=58) and Taiwan (n=48). Using AUROC in the Singapore Cohort, 

miR-221-3p had the highest accuracy in diagnosing HFMD with a positive predictive value 

of 83% and a negative predictive value of 75%. In order to determine if diagnostic accuracy 

could be further improved by including the expression of multiple miRNAs, a training set 

of 75% of the Singapore Cohort was used and then applied to the entire cohort using radial 

kernel SVM. The model identified 6 miRNAs with a peak accuracy of 85% (miR-221-3p, 

miR-145-5p, miR-142-3p, miR-125a-5p, miR-324-3p, and miR-18b-5p).

Random Forest—Diagnostics of ALL are sometimes nebulous, as accumulating 

mutations contributing to carcinogenesis are often shared between childhood B-cell ALL 

and T-cell ALL.77 To help discriminate childhood T-cell and B-cell ALL, Almeida et al. 

proposed a random forest method using miRNA expression profiles from bone marrow and 

peripheral blood blast samples of 8 children exhibiting T-ALL and 8 children exhibiting 

B-ALL. Samples in both groups ranged in severity levels.78 They reported 16 miRNAs 

differentially expressed between T- and B-ALL. There were 10 miRNAs downregulated and 

6 miRNAs upregulated in T-ALL. miR-29c-5p was the best predictor for leukemia subtypes, 

with an accuracy of 95% and a ROC area of 0.953. RT-qPCR validated that miR-29c-5p 

expression predicts ALL cell lineage, but is not associated with a specific subtype within a 

lineage, or a maturation stage.

Naïve Bayes—Autophagy has been thought to play a crucial role in various autoimmune 

diseases. In celiac disease (CD), it is thought that exogenous gliadin peptides may be 

targets of the autophagy clearance process.79 To further identify molecular players in 
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this mechanism, Comincini et al developed a Naïve Bayes method to identify regulatory 

miRNAs associated with CD.80 Using RT-qPCR, miRNA levels were measured from 

pediatric CD patient intestinal biopsy samples. To predict the relative contribution of each 

miRNA in the model’s stratification accuracy, a nomogram analysis was performed. miR-17 

and miR-30 were positive predictive features. Further, anti-miR-17 was shown to increase 

autophagy after in vitro experiments validated an increased presence of autophagic vesicles.

Deep Neural Network-Based Methods for miRNA Biomarker Discovery

Traditional machine methods are often limited to low true-positive rates due to their inability 

to capture complex nonlinear relationships from thousands of miRNA species. Deep neural 

network-based methods are designed to utilize multiple levels of transformation steps to 

extract higher-order features from the raw input data. These deep learning methods have 

been applied to pediatric diseases detection with significantly improved performance over 

traditional machine learning methods. For example, Casalino et al. proposed a multi-layer 

perceptron (MLP) for pediatric multiple sclerosis using miRNA expression profiles.81 This 

model achieved an overall classification accuracy of 94% using 40 features selected by 

Chi-squared testing. It also outperformed a model selected by human experts that used 

42 features and achieved only 83% accuracy. More recently, Casalino et al. extended 

their approach with a more general feature selection process.82 They used a linear SVM 

model to select top-ranked miRNA features and then utilized an MLP with two hidden 

layers to perform the classification task. The MLP model achieved the highest classification 

accuracy, precision, and recall scores in the test set compared to random forest classifiers.83 

Deep neural network models may even function as a feature extractors by augmenting 

the raw input data using their impressive capacity of capturing hidden, intricate, nonlinear 

relationships. Zheng et al. exploited a deep auto-encoder neural network (AE) for extracting 

feature representation and a random forest classifier for predicting potential miRNA–disease 

associations using miRNA profiles from multiple sources (including MISIM, MeSH, and 

HMDD datasets).84

Notably, these traditional machine learning methods are often linear or tree-based 

interpretable models such that the associations between pediatric diseases and miRNAs 

are clearly uncovered. On the other hand, deep learning methods generally outperform 

traditional machine learning methods, but they are notoriously hard to interpret. Fortunately, 

recent advances in interpretable machine learning have brought about an array of effective 

methods for explaining deep learning based prediction, such as knowledge distillation85, 

DeepLIFT86, Integrated Gradients87, and Adversarial Gradient Integration.88

MiRNAs in Pediatric Precision Care

Since 2012, there have been over 100 clinical trials studying miRNA therapeutics in 

pediatric pathology. Some of the more advanced studies involving miRNA therapeutics 

include clinical trials for hepatitis C89, solid tumors90, and Alport Syndrome91. Below, 

we discuss these conditions, and two additional disorders that may benefit from miRNA 

therapeutics (Figure 2B).
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Although hepatitis C virus (HCV) infection is predominantly a disease of adulthood, HCV 

can be acquired in the perinatal period through vertical transmission, and there are few 

options for treating childhood HCV. One of the first miRNA therapies to reach clinical 

studies was Miravirsen (anti-miR-122).89,92 This miRNA antagonist prevents binding 

between miR-122 and HCV, which is critical for viral stabilization and accumulation. 

A phase II study involving adults with HCV demonstrated a sustained, dose-dependent 

decrease in HCV levels, concomitant with changes in the expression of ~100 hepatic gene 

products.89 Subsequently, a mutation in HCV mRNA was detected among patients whose 

HSV load rebounded following therapy, rendering this HCV strain insensitive to miR-122 

antagonists. HCV mutations are also a common source of resistance to therapies involving 

protease inhibitors or polymerase inhibitors.93 Therefore, addition of miR-122 antagonists to 

these regimens might one day provide synergistic benefits.

Treatment success for solid tumors, such as glioblastoma multiforme, remains elusive, partly 

due to drug resistance.94 Emerging evidence suggests that co-treatment of solid tumors 

with miRNA therapeutics has the potential to overcome drug resistance.95 In gliomas, 

elevated levels of miR-221 are associated with invasiveness and temozolomide resistance. 

Co-delivery of temozolomide and a miR-221 antagonist induces apoptosis in temozolomide-

resistant cells.96 In initial studies of hepatocellular carcinoma, miR-34a displayed tumor-

suppressor potential through inhibition of key oncogenes.97 However, a subsequent study 

in hepatocellular carcinoma cells with β-catenin mutations suggested that miR-34a might 

actually have oncogenic effects, and a clinical trial of a miR-34a mimic was terminated 

following adverse events.98,99 Conversely, a phase I clinical trial for mesothelioma, which 

employed a miR-16 mimic, has shown promising early safety results (NCT02657460).90

Alport Syndrome is a rare condition that stems from genetic mutations in Type IV collagen 

genes and leads to progressive renal dysfunction (as well as disorders of the inner ears 

and eyes). In 27 patients with Alport Syndrome, levels of miR-21 were elevated in 

tubular epithelial cells and glomeruli, and demonstrated direct relationships with measures 

of disease severity (as measured by proteinuria, kidney function, and histopathology 

scores).100,101 Inhibition of miR-21 in Col4α3−/− mice using a miR-21 antagonist improved 

survival and reduced pathologic measures of glomerulosclerosis, interstitial fibrosis, and 

tubular injury. These results led to a planned Phase II, randomized, double-blind, placebo-

controlled study (clinical trial number: NCT02855268).91

miRNA-based therapies also hold potential in cystic fibrosis (CF).102 There are several 

miRNAs that regulate expression of the CFTR gene, and many exert effects on inflammatory 

markers or gene networks implicated in CF pathology. Some of the most promising miRNA-

based strategies in CF involve miRNA antagonists or target site blockers (molecules that 

bind to the 3’ untranslated region of a mRNA and prevent miRNA interaction). Transfection 

of target site blockers for miR-101 and miR-145 into bronchial epithelial cells from 

patients with CF has been shown to increase CFTR expression and activity.103 Similarly, 

target site blockers for miR-9, reduce interactions with ANO1 (an alternative chloride ion 

channel involved in airway surface maintenance), increasing cell migration and mucociliary 

clearance in animal models.104 Although clinical trials have not been initiated, it is possible 
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that this therapy could eventually be delivered via intranasal administration, promoting 

tissue-specific effects, and augmenting existing CFTR modulator therapies.

Duchene’s muscular dystrophy (DMD) is a progressive neuromuscular condition that results 

from a mutation in the dystrophin gene.105 Recently, developments in gene therapy have 

shown promise in treating individuals with DMD.106 However, current gene therapy does 

not completely cure DMD, since it does not incorporate the full protein into the muscle. 

There is a need for novel co-treatments that can facilitate enhance the therapeutic response. 

MiRNAs play an important role in myoblast-mediated muscle regeneration. Levels of 

miR-29c are decreased in the myoblasts of children with DMD.107 Co-treatment of a mouse 

model of DMD using gene therapy and miR-29 suppressed fibrosis and restored muscle 

function.108 Conversely, levels of miR-31 are elevated in both a dystrophic mouse model and 

muscle biopsies from DMD patients.109 Inhibiting the binding of miR-31 to the dystrophin 

mRNA (in combination with exon skipping) increased production of the dystrophin protein 

in myoblasts from DMD patients. Together these studies highlight how miRNA therapeutics 

might ameliorate neuromuscular pathology in DMD and supplement the exciting advances 

taking place in gene therapy.

Promise and Potential of miRNA Therapeutics

The therapeutic potential of miRNAs stems from their ability to target multiple mRNAs 

within the same pathway.11,110 Thus, while cells may find ways to circumnavigate single 

gene therapies through alternate/redundant signaling mechanisms, delivery of a single 

miRNA (or miRNA cluster) may successfully inhibit an entire physiologic process.

This characteristic holds significant promise in neoplastic conditions, such as leukemia. 

For example, the miR-17/miR-92 cluster can be used to target cell proliferation through 

inactivation of c-Myc and E2F transcripts111; while the miR-23a/miR-27b/miR-24-2 cluster 

may inhibit hematopoiesis through degradation of Fox01, Ebf1, and Pax5 transcripts.112 

Conversely, novel therapies may even target miRNA levels.113 Synthetic “antagomiRs” can 

be used to incapacitate specific miRNAs, addressing medical conditions with miRNA over-

expression, or increasing translation of key mRNAs.114 For such therapeutics to become 

reality, it will be crucial to deliver miRNAs and miRNA antagonists to pathologic tissues 

with high-fidelity (avoiding off-target side effects in healthy cells).115 Fortunately, rapid 

advances in our understanding of exosomes are catalyzing the development of synthetic 

micro-vesicles that utilize cell- or tissue-specific docking proteins to facilitate targeted 

delivery.116 Though such therapeutics would likely be delivered directly into circulation by 

intravenous administration, intranasal or oral administration of miRNA therapeutics may 

also be possible for certain medical conditions.95

Challenges of miRNA Therapeutics

The same pleiotropic characteristics that make miRNAs an appealing class of novel 

therapeutics, also yield makes them prone to off-target effects and adverse reactions. For 

example, miR-21 cancer therapy might ultimately provide an advantage over therapy aimed 

at a specific gene, by simultaneously targeting multiple oncogenic transcripts.117 However, 

miR-21 is expressed throughout the human body, and suppression of key mRNAs in 
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healthy tissues could cause unwanted apoptosis. One emerging strategy to reduce off-target 

effects involves the synthesis of target-specific extracellular vesicles (EVs) that can deliver 

miRNAs to specific cells. Synthesis of EVs with a CD47 marker may permit delivery to 

macrophages.118 However, many EVs doc at cells in a nonspecific manner, and synthetic 

vesicles may be eliminated from circulation by the innate immune system, resulting in 

unpredictable drug delivery.119 An alternative approach to synthetic EV generation, involves 

harvesting endogenous EVs from cell culture. Endogenous EVs may evade the host immune 

response by displaying membrane features that mimic natural EV composition.120 Currently, 

the processes necessary for cell culture, EV isolation, and EV storage inhibit large-scale 

drug production. These barriers will need to be overcome before endogenous EVs can be 

used to deliver miRNAs in the clinical setting.

Gaps in miRNA Biomarker Research

Gaps in miRNA biomarker research include widespread variability of post-analytical factors 

that can impact results.121 This is particularly true in next generation sequencing, where 

variations in the sensitivity of RNA alignment tools may lead to inaccurate detection 

of sequence errors, mismatches, and non-templated nucleotide additions that ultimately 

influence differential expression results.122 Normalization and scaling of RNA sequencing 

data post-alignment can also introduce intra-study variation in reported miRNA levels.123 

Post-analytic issues are not unique to high throughput sequencing. In qPCR, miRNAs 

of interest must be quantified against a non-variant reference gene.124 Selected reference 

genes vary widely across studies,125,126 and few studies ensure that stability of chosen 

reference genes extends to external cohorts, across pediatric ages, or throughout the 

circadian clock.127 There is a paucity of information about how the miRNome (i.e., the 

totality of human miRNAs) fluctuates with age.128 Few studies have specifically determined 

how child traits (sex, ethnicity) and environment (prandial status, exercise status, stress) 

impact miRNA levels.129,130 However, it is clear that a subset of miRNAs display diurnal 

variation.127,131 This highlights the importance of recording and controlling for sample 

collection time when developing miRNA tests.

Conclusions

The future of pediatric disease diagnostics relies on our ability to discover robust 

biomarkers. MiRNAs serve as a prime option, given their established role in human health 

and disease, their presence in a variety of human biofluids, and their ability to regulate 

entire pathways. The body of literature that is utilizing traditional and neural-network based 

methods for miRNA biomarker discovery continues to grow, and may hopefully yield 

potential therapeutic targets for more pediatric diseases. The interest of pharmaceutical 

companies in synthetic oligonucleotides also continues to grow; over 1 billion dollars were 

pledged by investors for Ionis Pharmaceutical in 2018. In March 2022, Creyon Bio secured 

40 million dollars to use machine learning approaches to identify oligonucleotide-based 

precision medicine therapies. As pre-clinical and clinical bodies of work use a multi-omic 

approach, there will be a need for researchers and physicians alike to understand how to 

interpret these large data sets, and what these data mean in the context of disease.
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Impact Statement:

• In the following review article, we summarized how recent developments in 

microRNA research may be coupled with machine learning techniques to 

advance pediatric precision care.
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Figure 1. miRNA processing and activity
Both messenger RNA and pri-micro-ribonucleic acids (miRNAs) are transcribed from the 

genome inside the nucleus. After the microprocessor complex converts pri-miRNA to a 

precursor miRNA complex, it is exported outside the nucleus by Exportin 5. The enzyme, 

Dicer, processes precursor miRNA into its single-stranded mature form, it can be loaded into 

the RNA-induced silencing complex. This complex facilitates binding with complementary 

messenger RNA molecules, preventing translation into proteins by ribosomes.
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Figure 2. Candidate miRNAs for the diagnosis and therapy of pediatric diseases
Top miRNA candidates for diagnosis/prognosis (A), and therapy (B) of pediatric diseases 

are displayed. Diseases of interest were selected based on their abundance of miRNA 

literature, and to reflect the ability of miRNAs to detect or treat pathology in organ systems 

throughout the body. In disease states where numerous miRNA candidates have been 

identified, ≤ 4 miRNAs are displayed based upon their detection across multiple studies, or 

their detection in studies with large sample sizes. The number after each miRNA denotes the 

reference paper in which it was reported. Abbreviations: Type 1 diabetes mellitus (T1DM); 

Bronchopulmonary dysplasia (BPD); Acute lymphoblastic leukemia (ALL); Duchene’s 

muscular dystrophy (DMD).
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