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Abstract

Transformers have improved the state-of-the-art in various natural language pro-1

cessing and computer vision tasks. However, the success of the Transformer model2

has not yet been duly explained. Current explanation techniques, which dissect3

either the self-attention mechanism or gradient-based attribution, do not necessarily4

provide a faithful explanation of the inner workings of Transformers due to the fol-5

lowing reasons: first, attention weights alone without considering the magnitudes6

of feature values are not adequate to reveal the self-attention mechanism; second,7

whereas most Transformer explanation techniques utilize self-attention module,8

the skip-connection module, contributing a significant portion of information flows9

in Transformers, has not yet been sufficiently exploited in explanation; third, the10

gradient-based attribution of individual feature does not incorporate interaction11

among features in explaining the model’s output. In order to tackle the above12

problems, we propose a novel Transformer explanation technique via attentive13

class activation tokens, aka, AttCAT, leveraging encoded features, their gradients,14

and their attention weights to generate a faithful and confident explanation for15

Transformer’s output. Extensive experiments are conducted to demonstrate the16

superior performance of AttCAT, which generalizes well to different Transformer17

architectures, evaluation metrics, datasets, and tasks, to the baseline methods.18

1 Introduction19

Transformers have advanced the state-of-the-art on a variety of natural language processing tasks20

[1, 2] and see increasing popularity in the field of computer vision [3, 4]. The main innovation behind21

the Transformer models is the stacking of multi-head self-attention layers to extract global features22

from sequential tokenized inputs. However, the lack of understanding of their mechanism increases23

the risk of deploying them in real-world applications [5, 6, 7]. This has motivated new research on24

explaining Transformers output to assist trustworthy human decision-making [8, 9, 10, 11, 12, 13].25

The self-attention mechanism [14] in Transformers assigns a pairwise score capturing the relative26

importance between every two tokens or image patches as attention weights. Thus, a common27

practice is to use these attention weights to explain the Transformer model’s output by exhibiting28

the importance distribution over the input tokens [6]. The baseline method, shown as RawAtt in29

Figure 2, utilizes the raw attention weights from a single layer or a combination of multiple layers [8].30

However, recent studies [9, 10, 11] question whether highly attentive inputs significantly impact the31

model outputs. Serrano et al. [9] demonstrate that erasing the representations accorded high attention32

weights do not necessarily lead to a performance decrease. Jain et al. [10] suggest that “attention33

is not explanation” by observing that attention scores are frequently inconsistent with other feature34

importance indicators like gradient-based measures. Abnar et al. [11] argue that the contextual35

information from tokens gets more similar as going deeper into the model, leading to unreliable36

explanations using the raw attention weights. The authors propose two methods to combine the37
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Figure 1: An illustration of Transformer architecture. The left panel shows a simple three-layer
Transformer model. Each layer consists of a self-attention module and a skip connection module
(shown in the right panel). The input is a sequence of tokens with two added special tokens, i.e.,
[CLS] and [SEP]. The third token, ‘like’ (x2), contributes mostly to the positive sentiment prediction
since its attention weighted output is the largest. Size of the colored circles illustrate the value of the
scalar or the norm of the corresponding vector. Arrows within the circles demonstrate the directions
of the vectors.

attention weights across multiple layers to cope with this issue. Their attention rollout method, shown38

as Rollout in Figure 2, reassigns the important scores to the tokens through the linear combination39

of attention weights across the layers tracing the information flow in Transformer. However, the40

rollout operation canceled out the accumulated important scores as some deeper layers have almost41

uniformly distributed attention weights. The attention flow method is formulated as a max-flow42

problem by dissecting the graph of pairwise attentions. While it somewhat outperforms the rollout43

method in specific scenarios, it is not ready to support large-scale evaluations [13].44

Recently, Bastings et al. [15] advocate using saliency method as opposed to attention as explanations.45

Although some gradient-based methods [16, 17, 18] have been proposed to leverage salience for46

explaining Transformer’s output, most of them still focus on the gradients of attention weights,47

i.e., Grads and AttGrads as shown in Figure 2. They suffer from a similar limitation to the above-48

mentioned attention-based methods. Layer-wise Relevance Propagation (LRP) method [19, 20],49

which is also considered as a type of saliency method, propagates relevance scores from the output50

layer to the input. There has been a growing body of work on using LRP to explain Transformers51

[12, 13]. Voita et al. [12] use LRP to capture the relative importance of the attention heads within52

each Transformer layer (shown as PartialLRP in Figure 2). However, this approach is limited by only53

providing partial information on each self-attention head’s relevance; no relevance score is propagated54

back to the input. To address this problem, Chefer et al. [13] provide a comprehensive treatment of55

the information propagation within all components of the Transformer model, which back-propagates56

the information through all layers from the output back to the input. This method further integrates57

gradients from the attention weights, shown as TransAtt in Figure 2. However, TransAtt relies on the58

specific LRP rules that is not applicable for other attention modules, e.g., co-attention. Thus it can59

not provide explanations for all transformer architectures [21].60

As such, the existing Transformer explanation techniques are not completely satisfactory due to three61

major issues. First, most attention-based methods disregard the magnitudes of the features. The62

summation operation (Eq. 2 shown in Figure 1) demonstrates both attention weights (the green circles)63

and the feature (the blue circles) contribute to the weighted outputs (the red circles). In other words,64

since the self-attention mechanism involves the computation of queries, keys, and values, reducing it65

only to the derived attention weights (inner products of queries and keys) is not ideal. Second, besides66

the self-attention mechanism, skip connection as another major component in Transformer is not67

even considered in current techniques. The latter enables the delivery and integration of information68

by adding an identity mapping from inputs to outputs, trying to solve the model optimization problem69

from the perspective of information transfer [22]. Moreover, Lu et al. [23] find that a significant70

portion of information flow in BERT goes through the skip connection instead of the attention heads71
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Figure 2: A summary of the existing explanation methods and our methods (CAT and AttCAT). The
Transformer consists several layers denoted as Layer (1), · · · , (l), · · · , (L). ∇α and ∇h represent
the gradients of attention weights α and outputs h, respectively. R is calculated based on layer-wise
relevance propagation (LRP). E denotes the explanation method. EH means averaging among
multi-head attentions in each layer.

(i.e., three times more often than attention on average). Thus, attention alone, without considering72

the skip connection, is not sufficient to characterize the inner working mechanism of Transformers.73

Third, the individual feature attribution-based approaches [13, 12, 24, 25] cannot capture the pairwise74

interactions of feature since gradients or relevance scores are calculated independently for each75

individual feature. For example, the gradients directly go through the Transformer layers from the76

output to the specific input (the token ‘like’), shown in Figure 1.77

We propose Attentive Class Activation Tokens (AttCAT) to generate token-level explanations leverag-78

ing features, their gradients, and their self-attention weights. Inspired by GradCAM [26], which uses79

gradient information flowing into the last convolutional layer of the Convolutional Neural Network80

(CNN) to understand the importance of each neuron for the decision of interest, our approach quan-81

tifies the impact of each token to the class-specific output via its gradient information. We further82

leverage the self-attention weights to capture the global contextual information of each token since it83

determines the relative importance of a single token concerning all other tokens in the input sequence.84

By disentangling the information flow across the Transformer layers for a specific token into the85

information from itself via a skip connection and the interaction information among all the tokens via86

a self-attention mechanism, we integrate the impact scores, which are generated using AttCAT, from87

multiple layers to give the final explanation.88

A summary of the baseline methods and our AttCAT method is shown in Figure 2, demonstrating89

their main similarities and differences. The RawAtt and Rollout [11] methods simply use the attention90

weights (α). The Grads method leverages the gradients of attention weights (∇αL) from the last91

Transformer layer, while the AttGrads method [17] integrates the attention weights (α) and their92

gradients (∇α) from all Transformer layers. The PartialLRP method [12] applies LRP only on the93

last Transformer layer (RL). Differently, the TransAtt method [21] integrates the relevance scores (R)94

from LRP and the gradients of attention weights (∇α). We use CAT, a new gradient-based attribution95

method leveraging the features (h) and their gradients (∇h), as our in-house baseline method. We96

further integrate attention weights (α) with CAT as the proposed AttCAT method.97

We state our contributions as follows: we propose a new Transformer explanation technique, AttCAT,98

leveraging the features, their gradients together with attention weights to generate the so-called99

impact scores to quantify the influence of inputs on the model’s outputs. Our AttCAT exploits100

both the self-attention mechanism and skip connection to explain the inner working mechanism of101

Transformers via disentangling information flows between intermediate layers. Furthermore, our102

class activation based method is capable of discriminating positive and negative impacts toward the103

model’s output using the directional information of the gradients. Finally, we conduct extensive104

experiments on different Transformer architectures, datasets, and Natural Language Processing (NLP)105

tasks, demonstrating a more faithful and confident explanation than the baseline methods using106

several quantitative metrics and qualitative visualizations.107
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2 Preliminaries108

2.1 Self-Attention Mechanism109

The encoders in Transformer model [1] typically stack L identical layers. Each contains two sub-110

layers: (a) a multi-head self-attention module and (b) a feed-forward network module, coupled with111

layer normalization and skip connection. As illustrated in Figure 1, each encoder computes the output112

h
(l)
i ∈ Rd of the i-th token combining the previous encoder’s corresponding output h(l−1)

i from the113

skip connection and a sequence output h(l−1) = {h(l−1)
1 , · · · ,h(l−1)

i , · · · ,h(l−1)
n } ⊆ Rd through114

self-attention mechanism:115

αl
i,j := softmax

(
Q(h

(l−1)
i )K(h

(l−1)
j )T

√
d

)
∈ R, (1)

116

hl
i = WO

 n∑
j=1

αi,jV (hj
(l−1)) + h

(l−1)
i

 , (2)

where αl
i,j is the attention weight assigned to the j-th token for computing h

(l)
i . d denotes the117

dimension of the vectors. Here, Q(·), K(·), and V (·) are the query, key, and value transformations:118

Q(h) := WQh, K(h) := WKh, V (h) := WV h, (WQ,WK ,WV ) ∈ Rd×d, (3)

respectively. We drop the bias parameters in these equations for simplicity. For multi-head attentions,119

we concatenate the output from each head.120

2.2 Class Activation Map121

GradCAM [26] is one the most successful CAM-based methods using the gradient information122

flowing into the last convolutional layer of CNN to understand the importance of each neuron123

for the decision of interest. In order to obtain the class discriminative localization map for the124

explanation, Grad-CAM first computes the gradient of the score for class c, i.e., yc before the softmax,125

concerning feature maps Ak of a convolutional layer as ∂yc

∂Ak . Then, these flowing back gradients are126

global-average-pooled to obtain the neuron importance weight wc
k:127

wc
k = E

(
∂yc

∂Ak

)
, (4)

where E denotes the global-average-pooling. The weight wc
k reflects a partial linearization of the128

CNN downstream from A and captures the importance of feature map k for a target class c. Then a129

weighted combination of forward activation maps is obtained by:130

GradCAMc = ReLU

(∑
k

wc
kA

k

)
, (5)

where ReLU() is applied to filter out the negative values since we are only interested in the features131

that positively influence the class of interest.132

3 Problem Formulation133

The objective of a token-level explanation method for Transformer is to generate a separate score134

for each input token in order to answer the question: Given an input text and a trained Transformer135

model, which tokens mostly influence the model’s output? There is no standard definition of influence136

in literature [27]. Some works use the term ‘importance’, whereas others use the term ‘relevance’137

depending on the explanation methods being used. Here we note that the token influence should138

reflect not only the magnitude of impact but also its directionality. As such, we define a new concept,139

Impact Score, to measure both Magnitude of Impact and Directionality. The former addresses the140

question “Which input tokens contribute mostly to the output?”. And the latter addresses the question141

“Given an input token, have positive or negative contributions been made to the output?” Formally,142

we define the Impact Score generated by our AttCAT method as follows:143
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Definition 1 (Impact Score) Given a pre-trained Transformer T (·), an input token x, and our144

explanation method EAttCAT(·). Impact Score is define as:145

Impact Score(EAttCAT(T (x))) =

{
|EAttCAT(T (x))|, Magnitude of Impact,

Sign(EAttCAT(T (x))), Directionality.
(6)

Remark 1 (Magnitude of Impact) The magnitude of impact indicates how much contribution has146

been made by each token. A sort function can be applied to the array of scores for the input tokens to147

retrieve the most impactful tokens on the output.148

Remark 2 (Directionality) The sign reveals whether each token makes a positive or negative149

impact on the output.150

4 Our Method: Attentive Class Activation Tokens151

4.1 Disentangling Information Flows in Transformer152

To interpret the inner working mechanism of Transformers, it is essential to understand how the153

information of each input token flows through each intermediate layer and finally reaches the output.154

Some previous works [11, 17] use heuristics to treat high attention weights and/or their gradients as155

indicators of important information flows across layers. Others [13, 12] apply LRP aiming to dissect156

the information flows via layer-wise back-propagation. However, these approaches either rely on the157

simple-but-unreliable assumption of linear combination of the intermediate layers or ignore the major158

components of Transformer, i.e., the magnitudes of the features and the skip connection.159

From Figure 1, we observe that the output sequence of the Transformer model has a one-to-one160

correspondence to its input sequence. The skip connection is a shortcut that bridges the input and161

output of the self-attention operation. We note that the Transformer encoder intuitively is an operator162

that adds the representation of token interactions (via self-attention mechanism) onto the original163

representation of the token (via skip connection). Therefore, from a perspective of information flow,164

we can specify the i-th token’s information at the (l)-th layer as:165

Information(xl
i) = Information(xl−1

i ) + Interaction(xl−1
i ,xl−1

n/i ), (7)

where Information(xl−1
i ) represents the information contained in the i-th token at the (l-1)-th layer,166

and Interaction(xl−1
i ,xl−1

n/i ) reflects the summation of all pairwise interaction between the i-th token167

and all other tokens (n/i).168

This observation motivates us to interpret the inner working mechanism of Transformers via dis-169

entangling the information flow Transformer. Thus, considering Eq. 7 as a recurrence relation,170

the final representation of the i-th token then consists of the original information (the input) plus171

token interactions between the i-th token and all other tokens at different layers. Since the CNN’s172

last convolutional layer also encodes both high-level semantics and detailed spatial information,173

corresponding to the original information and the interactions herein, the way GradCAM used for174

explaining a CNN model’s output inspired us to design Attentive Class Activation Tokens (AttCAT)175

to understand the impact of each token on a Transformer model’s output.176

4.2 Class Activation Tokens177

For a pre-trained Transformer, we can always find its output hl at l-th layer. Assume hl has n178

columns, each column corresponds to an input token (including the paddings, i.e., [CLS] and [SEP]).179

We write its columns separately as hl
1, · · · ,hl

i, · · · ,hl
n. As hL

i is the output of i-th token from the180

last Transformer layer L, to interpret the impact of i-th token to the final output yc for class c, it181

would be straightforward if we have a linear relationship between yc and hL
i as follows:182

yc =

n∑
i

wc
i · hL

i , (8)

where wc
i is the linear coefficient vector for hL

i . Inspired by GradCAM [26], we obtain the token183

important weights as:184

wc
i = ∇hL

i =
∂yc

∂hL
i

, (9)
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where wc
i illustrates a partial linearization from hL

i and captures the importance of i-th token to a185

target class c. Class Activation Tokens (CAT) is then obtained through a weighted combination:186

CATL
i = ∇hL

i ⊙ hL
i , (10)

where ⊙ is the Hadamard product. CATL
i denotes the impact score of the i-th token at L-th layer187

towards class c. Note that we do not apply ReLU() to filter out the negative scores here since we also188

care about the directionality of the impact score.189

4.3 Attentive CAT190

While CAT explains the model’s output according to the attribution of each individual token’s encoder191

output (Eq. 8), it does not consider the interaction among tokens, which is revealed via the self-192

attention mechanism. The self-attention mechanism [14] assigns a pairwise similarity score between193

every two tokens as the attention weight, encoding the important interaction information of these194

tokens. Therefore, we integrate self-attention weights with CAT to further incorporate the token195

interaction information for better quantifying the impact of each token on the Transformer model’s196

output. Our Attentive CAT (AttCAT) at L-th layer for i-th token is then formulated as:197

AttCATL
i = EH(αL

i ⊙ CATL
i ), (11)

where αL
i denotes the attention weights of the i-th token at L-th layer. EH(·) means averaging over198

multiple heads.199

Recall that Eq. 7 represents a recurrence relation, we can always find the output of l-th layer and200

assign it as yli. We can use Eq. 9, 10, and 11 to formulate AttCATl
i, denoting the impact score for201

i-th token at l-th layer.202

Finally, different from the Rollout and TransAtt methods that apply the rollout operation, we sum203

AttCATl
i over all Transformer layers as the final impact score of i-th token as follows:204

AttCATi =

L∑
j=1

AttCATj
i . (12)

We empirically demonstrate that the summation is a more effective way than Rollout in Figure 4.205

5 Experiments206

5.1 Desirable Properties of an Explanation Technique207

We first introduce two desirable properties of an explanation method: faithfulness and confidence,208

along with metrics to systematically evaluate the performance of various explanation techniques.209

Faithfulness quantifies the fidelity of an explanation technique by measuring if the tokens identified210

indeed impact the output. We adopt two metrics from prior work to evaluate the faithfulness of211

word-level explanations: the area over the perturbation curve (AOPC) [28, 29] and the Log-odds212

scores [30, 29]. These two metrics measure local fidelity by deleting or masking the top k% scored213

words and comparing the probability change on the predicted label.214

Confidence A token can receive several saliency scores, indicating its contribution to the prediction215

of each class. The tokens with higher impact scores of the predicted class c should also have lower216

impact scores for the remaining classes. In other words, the explanation techniques should be highly217

confident in recognizing the most impact tokens of the desired class (usually the predicted class).218

On the other hand, these tokens should have the most negligible impact on other classes. We use219

Kendall-τ correlation, the statistic measuring the strength of association between the ranked scores220

of different classes, to evaluate the confidence of an explanation method.221

5.2 Experiment Settings222

Transformer models: BERT [2] is one of the most representative Transformer models with impres-223

sive performance across a variety of NLP tasks, e.g., sentiment analysis and question answering.224

We use the BERTbase model and some variants (i.e., DistillBERT [31] and RoBERTa [32]) in our225

6



experiments. Our method can be generally applied to other Transformer architectures with minor226

modifications. The pre-trained models from Huggingface1 are used for validating our explanation227

method and comparing it to others. More details of these models and prediction performance are in228

Appendix.229

Datasets: We evaluate the performance using the following exemplar tasks: sentiment analysis230

on SST2 [33] , Amazon Polarity, Yelp Polarity [34], and IMDB [35] data sets; natural language231

inference on MNLI [36] data set; paraphrase detection on QQP [37] data set; and question answering232

on SQuADv1 [38] and SQuADv2 [39] data sets. More details of these data sets are described in233

Appendix.234

Baseline methods: Several baseline explanation methods for Transformer have been compared235

through our experiments, including the attention-based methods (i.e., RawAtt and Rollout [11]),236

the attention gradient-based methods (i.e., Grads and AttGrads [17]), the LRP-based methods237

(i.e., PartialLRP [12] and TransAtt [13]), and our proposed CAT and AttCAT methods. Figure 2238

summarizes and compares these methods with formulations.239

5.3 Evaluation Metrics240

AOPC: By deleting top k% words, AOPC calculates the average change of the prediction probability241

on the predicted class over all test examples as follows:242

AOPC(k) =
1

N

N∑
i=1

p(ŷ|xi)− p(ŷ|x̃k
i ), (13)

where N is the number of examples, ŷ is the predicted label, p(ŷ|·) is the probability on the predicted243

class, and x̃k
i is constructed by removing the k% top-scored words from xi. To avoid choosing244

an arbitrary k, we remove 0, 10, 20, · · · , 100% of the tokens in order of decreasing saliency, thus245

arriving at x̃0
i , x̃

10
i , · · · , x̃100

i . Higher values of AOPC are better, which means the deleted words are246

more impactful on the model’s output.247

LOdds: Log-odds score is calculated by averaging the difference of negative logarithmic probabilities248

on the predicted class over all test examples before and after masking k% top-scored words with zero249

paddings,250

LOdds(k) =
1

N

N∑
i=1

log
p(ŷ|x̃k

i )

p(ŷ|xi)
. (14)

The notations are the same as in Eq. 13 with the only difference that x̃k
i is constructed by replacing251

the top k% word with the special token [PAD] in xi. Lower LOdds scores are better.252

Kendal correlation: We use the Kendal-τ to evaluate confidence of an explanation method, formally:253

254

Kendal correlation =
1

N

N∑
i=1

Kendall-τ(S(xi)c, S(xi)C/c), (15)

where S(xi) denotes an array of the token index in order of the decreasing saliency (or attribution,255

or relevance, or impact) scores for a test example. A lower Kendal correlation demonstrates the256

explanation method is more confident in generating the saliency scores for predicting the class c.257

Precision@K: Inspired by the original Precision@K used in recommender system [40], we design258

a novel Precision@K to evaluate the explanation performance on SQuAD data sets. For each test259

example, we count the number of tokens in the answer that appear in the K top-scored tokens as260

Precision@K. Therefore, higher Precision@K scores are better.261

6 Results and Discussions262

6.1 Quantitative Evaluations263

Table 1 depicts the results of various explanation methods and data sets. We report the average264

AOPC and LOdds scores over k values. Due to computation costs, we experiment on a subset with265

1https://huggingface.co/
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Method SST2 QQP MNLI Amazon Yelp IMDB
AOPC↑ LOdds↓ AOPC LOdds AOPC LOdds AOPC LOdds AOPC LOdds AOPC LOdds

RawAtt 0.331 -0.885 0.143 0.149 0.138 0.235 0.384 -1.729 0.394 -2.017 0.298 -1.245
Rollout 0.286 -0.641 0.139 0.262 0.151 0.321 0.324 -1.303 0.277 -1.055 0.331 -1.323
Grads 0.335 -0.252 0.141 0.184 0.156 0.139 0.316 -1.820 0.414 -1.994 0.304 -1.227

AttGrads 0.351 -0.603 0.143 0.113 0.159 0.114 0.346 -1.941 0.439 -2.054 0.310 -1.267
PartialLRP 0.341 -0.922 0.142 0.137 0.138 0.231 0.418 -2.019 0.424 -2.199 0.312 -1.321
TransAtt 0.354 -1.038 0.145 0.114 0.130 0.214 0.415 -1.889 0.434 -2.508 0.421 -2.137

CAT 0.352 -1.115 0.134 0.121 0.157 0.121 0.409 -2.157 0.421 -2.587 0.406 -3.052
AttCAT 0.371 -1.319 0.139 0.073 0.164 0.008 0.457 -2.332 0.473 -3.169 0.528 -3.671

Table 1: AOPC and LOdds scores of different methods in explaining BERT on different data sets.
Higher AOPC and lower LOdds scores are better. Best results are in bold.

2,000 randomly selected samples for the Amazon, Yelp, and IMDB data sets. Entire test sets are266

used for other data sets. AttCAT achieves the highest AOPC and lowest LOdds scores in most267

settings, demonstrating that the most impactful tokens for model prediction have been deleted or268

replaced. Among all the compared methods, the attention-based methods (i.e., RawAtt and Rollout)269

perform worst since attention weights alone without considering the magnitudes of feature values are270

not adequate to analyze the inner working mechanism of Transformers. Remarkably, AttCAT also271

outperforms TransAtt, a recent work representing a strong baseline method. The performance of CAT,272

shown here as an ablation study, drops markedly, supporting the effectiveness of using self-attention273

weights in AttCAT.274

Table 2 shows the Kendal-τ based confidence score of the different explanation techniques for BERT275

tested using various data sets. We do not report the confidence scores of the attention-based methods276

since they are class agnostic. AttCAT achieves the best performance on most data sets; different277

classes observe distinctively sorted tokens, leading to much lower Kendal correlations. In other278

words, our AttCAT is highly confident in recognizing the most impactful tokens for predicting the279

class of interest.280

Method STT2 QQP MNLI Amazon Yelp IMDB
Grads 0.150 0.236 0.169 0.146 0.174 0.098

AttGrads 0.116 0.198 0.156 0.148 0.132 0.064
PartialLRP 0.955 0.949 0.935 0.965 0.952 0.858
TransAtt 0.336 0.222 0.339 0.152 0.121 0.043

CAT 0.101 0.373 0.339 0.095 0.107 0.056
AttCAT 0.018 0.349 0.017 0.015 0.008 0.023

Table 2: Kendal correlation of different explanation methods in explaining BERT varying data sets.
Lower scores are better. Only class-specific methods are selected. Best results are in bold.

We show the Precision@K scores for the SQuAD data sets in Figure 3. Here K is set to 20. The281

results of varying K values are shown in Appendix. Our results clearly demonstrate that AttCAT is282

superior to other methods and generalizes well to various BERT architectures on SQuAD data sets.283

The higher score means that AttCAT can capture more impactful answer tokens in the TOP-20 sorted284

tokens, proving its capability to generate more faithful explanations.285

6.2 Qualitative Visualizations286

Lastly, we show a heatmap of the normalized impact scores generated by AttCAT in Figure 4. The287

first 12 rows (L0-L11) show the impact scores of each token from different BERT layers. The darker288

shaded token represents a higher score, as shown in the legend. The signs of scores indicate their289

directionalities. This heatmap also justifies the effectiveness of the summation operation we used290

in Eq. 12. As shown in the figure, the impact scores become uniform and less impactful as the291

layer goes deeper, which is consistent with the observation from [11] where the authors argue that292

the embeddings are more contextualized and tend to carry similar information in the deeper layers.293

Thus, the rollout operation used in [11, 13] will attenuate the impact scores at shallower layers (i.e.,294

L0-L9) since they are multiplied by scores at the deeper layers (i.e., L10-L11). As shown in the295

row of ‘Rollout’ in the figure, the rollout operation only gives minimal impact scores of the tokens,296

indicating essentially no information has been captured for the explanation. While the summation297

operation (ours), shown as the row of ‘Sum’, generates a faithful explanation incorporating the impact298

scores from each layer. In term of Impact Score, the token ‘not’ with the highest positive impact299
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planation methods for different Transformer models
on SQuAD data sets. Higher scores are better. The
max scores of SQuADv1 and SQuADv2 are 3.72
and 3.84, respectively.
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Figure 4: Heatmap of the normalized impact
scores from different BERT layers. Rollout
and Sum denote the rollout and summation
(ours) operations, respectively. Best viewed in
color.

score (0.72) contributes mostly to the negative sentiment of this sentence, whereas the token ‘like’300

with the highest negative impact score (-0.37) contributes inversely.301

The ground truth answer of the question answering example shown in Figure 5a is “denver brconcos".302

AttCAT successfully captures these two tokens with the darkest green shades, corresponding to303

highest impact scores. The example from SST2 shown in Figure 5b has a negative sentiment. Both304

AttCAT and TransAtt capture the most impactful tokens, such as ‘boring’, ‘didn’, and ‘t’, which305

contribute mostly to the negative sentiment prediction. Besides the tokens explaining the negative306

sentiment, our AttCAT method also identified some other tokens that contribute inversely to the307

negative sentiment, e.g., ‘like’ and ‘really’ (shown in dark shade of red), whereas TransAtt is not308

capable of differentiating positive and negative contributions. RawAtt gives more attention on some309

irrelevant tokens, i.e., ‘overall’, ‘but’, and the punctuations. Rollout only generates some uniformly310

distributed important scores for the tokens.

(a) A visualization of the impact scores generated by AttCAT on a showcase example in SQuAD.

（a）AttCAT
（b）TransAtt
（c）RawAtt
（d）Rollout

(b) Visualizations of the impact scores generated by the selected methods on a showcase example in SST2.

Figure 5: Visualization examples. The green shade indicates an important positive impact whereas
the read shade means otherwise. Darker colors represent higher impact scores. Best viewed in color.
More examples are in Appendix.

311

7 Conclusion312

This work addresses the major issues in generating faithful and confident explanations for Trans-313

formers via a novel attentive class activation tokens approach. AttCAT leverages the features, their314

gradients, and corresponded attention weights to define the so-called impact scores, which quantify315

the impact of inputs on the model’s outputs. The impact score can give both magnitude and direction-316

ality of the input tokens’ impact. We conduct extensive experiments on different Transformer models317

and data sets and demonstrate that our AttCAT achieves the best performance among strong baseline318

methods using quantitative metrics and qualitative visualizations. We will extend our AttCAT method319

to explain generative and vision Transformer architectures as future works.320
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